Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor

Erdem, Onur
Gungor, Kivanc
Guzelturk, Burak
Tanriover, Ibrahim
Sak, Mustafa
Olutas, Murat
Dede, Didem
Keleştemur, Yusuf
Demir, Hilmi Volkan
We proposed and showed strongly orientation-controlled Forster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquidair interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm(2). These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipoledipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d(-4) regardless of the specific NPL orientation. Our FRET model, which is based on the original Forster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.


Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model
Iltan, EO (Springer Science and Business Media LLC, 2005-11-01)
We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10(-22) e cm (10(-20) e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment.
Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model
Iltan, EO (American Physical Society (APS), 2001-07-01)
We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(mu-->e gamma) in the framework of the general two Higgs doubler model. Our prediction is 10(-32) e cm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings )over bar>(D)(N,taue) and )over bar>(D)(N,tau mu). Finally, we present an expression which connects the BR(tau-->mu gamma) and the electric dipole moment of th...
Tight binding investigation of graphene nanostructures under magnetic field
Yalçın, Fırat; Toffoli, Hande; Department of Physics (2019)
Electrons moving under the effects of a two dimensional periodic potential and a magnetic field perpendicular to this two dimensional plane has been the focus of many different studies for a long time. The interplay between the two length scales in this problem, lattice constant and the characteristic magnetic length, results in interesting phenomena such as the Hofstadter's butterfly. The bulk of the studies done so far has focused on uniform magnetic fields. The only requirement for the vector potential i...
Nonradiative energy transfer in colloidal CdSe nanoplatelet films
Guzelturk, Burak; Olutas, Murat; Delikanli, Savas; Keleştemur, Yusuf; Erdem, Onur; Demir, Hilmi Volkan (2015-01-01)
Nonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy. NRET takes place...
Vortex phases in magnetic fields near ab-plane in Bi2Sr2CaCu2O8+delta single crystal
Mirkovic, Jovan; Saito, Takashi; Kashiwagi, Takanari; Kakeya, Itsuhiro; Kubo, Yuimaru; Yamamoto, Takashi; Oral, Ahmet; Kadowaki, Kazuo (2010-12-01)
Vortex matter of the layered superconductors in very high magnetic fields near the ab-plane was studied by using the c-axis resistivity measurements on the mesoscopic Bi2Sr2CaCu2O8+delta single crystals. While the angular dependence of resistance exhibits the sharp lock-in features in low magnetic field region, it was found that the vortex lock-in transition becomes considerably broad in high magnetic fields, showing anomalous shoulders at 0.3 degrees away from the ab-plane. The appearance of the resistance...
Citation Formats
O. Erdem et al., “Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor,” NANO LETTERS, vol. 19, no. 7, pp. 4297–4305, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92719.