Pin-structures on surfaces and quadratic forms

1997-12-01
Degtyarev, A.
Finashin, Sergey
A correspondence between various Pin-type structures on a compact surface and quadratic (linear) forms on its homology is constructed. Sum of structures is defined and expressed in terms of these quadratic forms and in terms of Whitney sum of Spin structures.
Turkish Journal of Mathematics

Suggestions

Curves with many points and configurations of hyperplanes over finite fields
Özbudak, Ferruh (Elsevier BV, 1999-10-01)
We establish a correspondence between a class of Kummer extensions of the rational function field and configurations of hyperplanes in an affine space. Using this correspondence, we obtain explicit curves over finite fields with many rational points. Some of our examples almost attain the Oesterle bound. (C) 1999 Academic Press.
On symplectic quotients of K3 surfaces
Cinkir, Z; Onsiper, H (Elsevier BV, 2000-12-18)
In this note, we construct generalized Shioda-Inose structures on K3 surfaces using cyclic covers and almost functoriality of Shioda-Inose structures with respect to normal subgroups of a given group of symplectic automorphisms.
Structural Coupling of Two Nonlinear Structures
Tepe, Çağrı; Ciğeroğlu, Ender (null; 2015-02-02)
In mechanical design, modeling and analysis of a complex structure can be simplified with dividing the structure into substructures; therefore, any change in the structure can be addressed easily which is referred as “structural coupling”. Utilization of proper coupling techniques, it is possible to understand the behavior of the whole structure by considering the behavior of its substructures. For linear structures, coupling is a common technique; however, in most of the engineering structures, nonlinearit...
Surface mapping class groups are ultrahopfian
Korkmaz, Mustafa (2000-07-01)
Let S denote a compact, connected, orientable surface with genus g and h boundary components. We refer to S as a surface of genus g with h holes. Let [Mscr ]S denote the mapping class group of S, the group of isotopy classes of orientation-preserving homeomorphisms S → S. Let G be a group. G is hopfian if every homomorphism from G onto itself is an automorphism. G is residually finite if for every g ∈ G with g ≠ 1 there exists a normal subgroup of finite index in G which does not contain g. Every finitely ...
NONCOMMUTATIVE MACKEY THEOREM
Dosi, Anar (World Scientific Pub Co Pte Lt, 2011-04-01)
In this note we investigate quantizations of the weak topology associated with a pair of dual linear spaces. We prove that the weak topology admits only one quantization called the weak quantum topology, and that weakly matrix bounded sets are precisely the min-bounded sets with respect to any polynormed topology compatible with the given duality. The technique of this paper allows us to obtain an operator space proof of the noncommutative bipolar theorem.
Citation Formats
A. Degtyarev and S. Finashin, “Pin-structures on surfaces and quadratic forms,” Turkish Journal of Mathematics, vol. 21, no. 2, pp. 187–193, 1997, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33644554373&origin=inward.