Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition
Date
2021-11-01
Author
Doğan, Abdullah
Barua, Prabal Datta
Baygin, Mehmet
Dogan, Sengul
Tuncer, Turker
Doğru, Ali Hikmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
165
views
0
downloads
Cite This
Nowadays, many deep models have been presented to recognize emotions using electroencephalogram (EEG) signals. These deep models are computationally intensive, it takes a longer time to train the model. Also, it is difficult to achieve high classification performance using for emotion classification using machine learning techniques. To overcome these limitations, we present a hand-crafted conventional EEG emotion classification network. In this work, we have used novel prime pattern and tunable q-factor wavelet transform (TQWT) techniques to develop an automated model to classify human emotions. Our proposed cognitive model comprises feature extraction, feature selection, and classification steps. We have used TQWT on the EEG signals to obtain the sub-bands. The prime pattern and statistical feature generator are employed on the generated sub-bands and original signal to generate 798 features. 399 (half of them) out of 798 features are selected using minimum redundancy maximum relevance (mRMR) selector, and misclassification rates of each signal are evaluated using support vector machine (SVM) classifier. The proposed network generated 87 feature vectors hence, this model is named PrimePatNet87. In the last step of the feature generation, the best 20 feature vectors which are selected based on the calculated misclassification rates, are concatenated. The generated feature vector is subjected to the feature selection and the most significant 1000 features are selected using the mRMR selector. These selected features are then classified using an SVM classifier. In the last phase, iterative majority voting has been used to generate a general result. We have used three publicly available datasets, namely DEAP, DREAMER, and GAMEEMO, to develop our proposed model. Our presented PrimePatNet87 model reached over 99% classification accuracy on whole datasets with leave one subject out (LOSO) validation. Our results demonstrate that the developed prime pattern network is accurate and ready for real-world applications.
Subject Keywords
Prime pattern networkm
,
RMR selector
,
Hand-crafted method
,
EEG signal Classification
,
Emotion recognition
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115031697&origin=inward
https://hdl.handle.net/11511/92876
Journal
Computers in Biology and Medicine
DOI
https://doi.org/10.1016/j.compbiomed.2021.104867
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Discrete wavelet transform based shift invariant analysis scheme for transient sound signals
Wasim, Ahmad; Hacıhabiboğlu, Hüseyin; Kondoz, Ahmet (2010-09-06)
Discrete wavelet transform (DWT) has gained widespread recognition and popularity in signal processing due to its ability to underline and represent time-varying spectral properties of many transient and other nonstationary signals. However, DWT is a shift-variant transform. This shift-variance is a major problem with the use of DWT for transient signal analysis and pattern recognition applications. A number of modified forms of DWT have been investigated in recent years that provide approximate shift-invar...
A Sparse Temporal Mesh Model for Brain Decoding
Afrasiyabi, Arman; Onal, Itir; Yarman Vural, Fatoş Tunay (2016-08-23)
One of the major drawbacks of brain decoding from the functional magnetic resonance images (fMRI) is the very high dimension of feature space which consists of thousands of voxels in sequence of brain volumes, recorded during a cognitive stimulus. In this study, we propose a new architecture, called Sparse Temporal Mesh Model (STMM), which reduces the dimension of the feature space by combining the voxel selection methods with the mesh learning method. We, first, select the "most discriminative" voxels usin...
RESPONSE BIAS SHIFT FOR POSITIVE WORDS IN OLDER ADULTS IN A SURPRISE RECOGNITION MEMORY TASK: AN INCIDENTAL ENCODING STUDY
KAYNAK, HANDE; Gökçay, Didem (2017-01-01)
Introduction: Although the advantages of positive words on memory enhancement have been documented, the specific effects of the two prominent emotional dimensions (valence and arousal) under incidental encoding require further investigation. The objective is to study memory accuracy and response bias for positive/negative and highly/medium arousing words in a surprise old/new recognition memory paradigm under incidental encoding.
EEG Classification based on Image Configuration in Social Anxiety Disorder
Mokatren, Lubna Shibly; Ansari, Rashid; Cetin, Ahmet Enis; Leow, Alex D.; Ajilore, Olusola; Klumpp, Heide; Yarman Vural, Fatoş Tunay (2019-01-01)
The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting ...
An Information Theoretic Approach to Classify Cognitive States Using fMRI
Onal, Itir; Ozay, Mete; Firat, Orhan; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-11-13)
In this study, an information theoretic approach is proposed to model brain connectivity during a cognitive processing task, measured by functional Magnetic Resonance Imaging (fMRI). For this purpose, a local mesh of varying size is formed around each voxel. The arc weights of each mesh are estimated using a linear regression model by minimizing the squared error. Then, the optimal mesh size for each sample, that represents the information distribution in the brain, is estimated by minimizing various inform...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Doğan, P. D. Barua, M. Baygin, S. Dogan, T. Tuncer, and A. H. Doğru, “PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition,”
Computers in Biology and Medicine
, vol. 138, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115031697&origin=inward.