Filter design for small target detection on infrared imagery using normalized-cross-correlation layer

Download
2020-01-01
Demir, H. Seckin
Akagündüz, Erdem
In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similar to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on midwave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept.
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Suggestions

Target tracking and sensor placement for doppler–only measurements
Ayazgök, Süleyman; Orguner, Umut; Department of Electrical and Electronics Engineering (2015)
This thesis investigates the problems of target tracking and optimal sensor placement with Doppler-only measurements. First, a single point track initialization algorithm proposed in the literature is investigated for Doppler-only tracking. The initialization algorithm is based on separable least squares method and involves a grid-based optimization. Second, particle filters are considered for Doppler-only tracking and they are compared to an extended Kalman filter (EKF). It is shown that a classical bootst...
HYPERSPECTRAL UNMIXING BASED VEGETATION DETECTION WITH SEGMENTATION
Özdemir, Okan Bilge; Soydan, Hilal; Çetin, Yasemin; Duzgun, Sebnem (2016-07-15)
This paper presents a vegetation detection application with semi-supervised target detection using hyperspectral unmixing and segmentation algorithms. The method firstly compares the known target spectral signature from a generic source such as a spectral library with each pixel of hyperspectral data cube employing Spectral Angle Mapper (SAM) algorithm. The pixel(s) with the best match are assumed to be the most likely target vegetation locations. The regions around these potential target locations are furt...
Sensor Fusion of a Camera and 2D LIDAR for Lane Detection
Schmidt, Klaus Verner (null; 2019-04-26)
This paper presents a novel lane detection algorithm based on fusion of camera and 2D LIDAR data. On the one hand, objects on the road are detected via 2D LIDAR. On the other hand, binary bird’s eye view (BEV) images are acquired from the camera data and the locations of objects detected by LIDAR are estimated on the BEV image. In order to remove the noise generated by objects on the BEV, a modified BEV image is obtained, where pixels occluded by the detected objects are turned into background pixels. Then,...
Infrared Target Detection using Shallow CNNs
Uzun, Engin; Aksoy, Tolga; Akagündüz, Erdem (2020-01-01)
Convolutional Neural Networks can solve the target detection problem satisfactorily. However, the proposed solutions generally require deep networks and hence, are inefficient when it comes to utilising them on performance-limited systems. In this paper, we study the infrared target detection problem using a shallow network solution, accordingly its implementation on a performance limited system. Using a dataset comprising real and simulated infrared scenes; it is observed that, when trained with the correc...
Sensor fusion of a camera and 2D LIDAR for lane detection and tracking
Yeniaydın, Yasin; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2019)
This thesis proposes a novel lane detection and tracking algorithm based on sensor fusion of a camera and 2D LIDAR. The proposed method is based on the top down view of a grayscale image, whose lane pixels are enhanced by the convolution with a 1D top-hat kernel. The convolved image is horizontally divided into a predetermined number of regions and the histogram of each region is computed. Next, the highest valued local maxima in a predefined ratio in the histogram plots are determined as candidate lane pix...
Citation Formats
H. S. Demir and E. Akagündüz, “Filter design for small target detection on infrared imagery using normalized-cross-correlation layer,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, vol. 28, no. 1, pp. 302–317, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93552.