Genişlemeli Bölgelerde Oluşan Transfer Fayların Gerinim Analizi: Mikropolar Teori ile Çıkarımlar

2021-04-26
Transfer faults are generally identified as transversely oriented discrete faults linking normal fault segments in extensional tectonic settings. The presence of the transfer faults in fault networks provides displacement transfer between the normal faults. The role and tectonic significance of transfer faults in overall extensional deformation of the upper crust is however not known very well. Micropolar theory extended by J-2 plasticity facilitates evaluation of a deforming medium in which cataclastic flow takes place with respect to each component of deformation. In this study, a series of experiments based on the Micropolar theory are performed, using fault-slip patterns, to better understand interplay among dip angle of normal and transfer faults connecting to each other, angle of linkage, and extensional direction. Synthetic linkage cases are created systematically considering various orientation of both faults sharing common stretching direction.Our findings reveal that in orthogonal and oblique linkage cases, 3D strain field is mostly observed; a few cases exhibit plane strain. All cases are subjected to simple shearing. In cases of orthogonal linkage, extensional direction is predominantly oblique to the strike of the normal faults. Many of these cases have no block rotation (microrotation) independent from macrorotation. No particular relationship between changing dip amount of faults and direction of extension is observed. In cases of oblique linkage, (sub)orthogonal direction of extension appear in nearly half of experiments, especially those including normal faults dipping less than 60˚. The frequency of non-zero microrotation is seen apparently more than that in orthogonal linkage cases.The study represents that structural togetherness of the transfer and normal faults essentially can accommodate complete micropolar strain in a region. This further suggests that not only the normal faults but the transfer faults should also be considered as major primary structural elements in extending domains.
EGU General Assembly 2021

Suggestions

An investigation of liquefaction effects on piers and piles of segmental precast balanced cantilever bridges
Gündüz, Özer; Caner, Alp; Department of Earthquake Studies (2019)
In this thesis, the seismic behavior of a typical segmental precast balanced cantilever bridge over liquefiable soils is investigated. Liquefaction is a phenomenon that is triggered by large movements of the sand layer during earthquakes and cause damage to structures. The subject is still under investigation, approaches for liquefaction induced lateral spreading calculations can be found in the literature. Inertial and kinematic effects of the lateral spreading were studied with a total of four different a...
Seismic assessment of reinforced concrete beam-to-column connections under reversed cyclic loading
Akın, Umut; Burak Bakır, Burcu; Department of Civil Engineering (2011)
Prior experimental research clearly reveals that the performance of reinforced concrete frame structures under earthquake loading is closely related to the behavior of beam-to-column connection regions. In order for a reinforced concrete building to have an adequate response under high lateral deformations, beam-to-column connections should be able to preserve their integrity. However, even today beam-to-column connections are assumed to be rigid or elastic, leading to an incorrect estimation of the structu...
Finite element implementation of a model to estimate the permanent strain of cyclically-loaded soil
Babaoğlu, Muhittin; Erdoğan, Sinan Turhan; Department of Civil Engineering (2020)
In vast majority of geotechnical structures such as monopile or strip foundation, which are subjected to repeated loading, long-term resilience of the structures is directly related with the behavior of granular materials subjected to cyclic loading. Repeatedly loaded structure distributes stress to soil that surrounds the structure. When granular materials are exposed to cyclic loading, plastic strain occurs despite the applied stress is less than plastic yield, which results to residual settlement. This t...
Large deformation analysis of shells under impulsive loading
Evcim, Mehmet; Darendeliler, Haluk; Department of Mechanical Engineering (2010)
In this thesis large deformation behavior of shell structures under high intensity transient loading conditions is investigated by means of finite element method. For this purpose an explicit finite element program is developed with interactive user interface. The developed program deals with geometric and material nonlinearities which stem from large deformation elastic - plastic behavior. Results of the developed code are compared with the experimental data taken from the literature and simulation results...
Uncertainty based analysis of seepage through earth-fill dams
Çalamak, Melih; Yanmaz, Ali Melih; Kentel Erdoğan, Elçin; Department of Civil Engineering (2014)
The steady-state and transient seepage through embankment dams are investigated considering the uncertainty of hydraulic conductivity and van Genuchten fitting parameters, α and n used for unsaturated flow modeling. A random number generation algorithm producing random values for these parameters is coupled with a finite element software, SEEP/W to analyze seepage through earth-fill dams. Monte Carlo simulation is adopted for stochastic seepage analyses. The variability effects of the random parameters on s...
Citation Formats
B. Tokay and E. Bozkurt, “Genişlemeli Bölgelerde Oluşan Transfer Fayların Gerinim Analizi: Mikropolar Teori ile Çıkarımlar,” presented at the EGU General Assembly 2021, Vienna, Avusturya, 2021, Accessed: 00, 2021. [Online]. Available: https://meetingorganizer.copernicus.org/EGU21/EGU21-14589.html.