Interfacial modification to optimize stainless steel photoanode design for flexible dye sensitized solar cells: an experimental and numerical modeling approach

2016-10-01
Taleghani, Sara Salehi
Meymian, Mohammad Reza Zamani
Ameri, Mohsen
In the present research, we report fabrication, experimental characterization and theoretical analysis of semi and full flexible dye sensitized solar cells (DSSCs) manufactured on the basis of bare and roughened stainless steel type 304 (SS304) substrates. The morphological, optical and electrical characterizations confirm the advantage of roughened SS304 over bare and even common transparent conducting oxides (TCOs). A significant enhancement of about 51% in power conversion efficiency is obtained for flexible device (5.51%) based on roughened SS304 substrate compared to the bare SS304. The effect of roughening the SS304 substrates on electrical transport characteristics is also investigated by means of numerical modeling with regard to metal-semiconductor and interfacial resistance arising from the metallic substrate and nanocrystalline semiconductor contact. The numerical modeling results provide a reliable theoretical backbone to be combined with experimental implications. It highlights the stronger effect of series resistance compared to schottky barrier in lowering the fill factor of the SS304-based DSSCs. The findings of the present study nominate roughened SS304 as a promising replacement for conventional DSSCs substrates as well as introducing a highly accurate modeling framework to design and diagnose treated metallic or non-metallic based DSSCs.
JOURNAL OF PHYSICS D-APPLIED PHYSICS

Suggestions

Photovoltaic Properties of Poly(Triphenylamine-Thiazolo[5,4-d] Thiazole) Copolymer Dye in Bulk-Hetorojunction Organic Solar Cells
Olgun, Ugursoy; Gulfen, Mustafa; HIZALAN, Gonul; Çırpan, Ali; Toppare, Levent Kamil (2017-04-01)
In this study, the photovoltaic properties of poly(triphenylamine-thiazolo[5,4-d]thiazole) alternating copolymer dye in bulk heterojunction polymer solar cells were examined. The copolymer is a red colored dye material with high thermal stability, good solubility and low-band gap energy. The band gap energy of the polymer was determined as 1.36 eV. The conductivity of the polymer thin film was measured as 1.5x10(-5) S/cm. The polymer solar cells were fabricated using the different ratios of the blends of th...
Enhanced localized surface plasmon resonance obtained in two step etched silicon nanowires decorated with silver nanoparticles
Mulazimoglu, Emre; Nogay, Gizem; Turan, Raşit; Ünalan, Hüsnü Emrah (2013-09-30)
We report on localized surface plasmon resonance (LSPR) of silicon nanowires decorated with silver nanoparticles. Hydrogen peroxide in metal-assisted-etching method degenerates the surface of nanowires and creates oxygen-related defect sites. These defect sites enhance the infrared absorption at higher frequencies and emit visible light by band-to-band radiative recombination. Moreover, an almost 50-fold enhanced LSPR was obtained for 24 nm thick silver deposited 5 mu m long silicon nanowires. This enhancem...
Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers
Ustunsoy, Mehmet Pasa; Sabah, Cumali (2016-12-05)
In this paper, a dual-band high-frequency metamaterial absorber based on patch resonator is designed and analyzed for solar cells. In order to obtain a metamaterial absorber, metal-semiconductor-metal layers are combined. The results of the designed structure are shown in the infrared and visible ranges of solar spectrum. Structural parameters and dimensions of the device have a significant importance on the performance of the designed absorber. The simulations are carried out with full-wave electromagnetic...
Microstructure effects on process outputs in micro scale milling of heat treated Ti6Al4V titanium alloys
Ahmadi, Masoud; Karpat, Yigit; ACAR, Ozgun; Kalay, Yunus Eren (2018-02-01)
This study investigates the influence of materials' microstructural characteristics, including grain size and phase fractions, in micro end milling of heat treated Ti6Al4V titanium alloys. Micro milling process conditions such as feed, depth of cut, and the cutting edge radius of the micro end mill are in the same order of magnitude as the grain size of the material, which gives rise to the anisotropic behavior of the multiphase materials and their deformation characteristics considering their grain size, g...
Photovoltaic performance of bifacial dye sensitized solar cell using chemically healed binary ionic liquid electrolyte solidified with SiO2 nanoparticles
Cosar, Burak; Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Özenbaş, Ahmet Macit (2013-01-01)
In this study, we investigated the effect of electrolyte composition, photoanode thickness, and the additions of GuSCN (guanidinium thiocyanate), NMB (N-methylbenimidazole), and SiO2 on the photovoltaic performance of DSSCs (dye sensitized solar cells). A bifacial DSSC is realized and irradiated from front and rear sides. The devices give maximum photovoltaic efficiencies for 70% PMII (1-propyl-3-methyl-imidazolium iodide)/30% (EMIB(CN)(4)) (1-ethyl-3-methyl-imidazolium tetracyanoborate) electrolyte composi...
Citation Formats
S. S. Taleghani, M. R. Z. Meymian, and M. Ameri, “Interfacial modification to optimize stainless steel photoanode design for flexible dye sensitized solar cells: an experimental and numerical modeling approach,” JOURNAL OF PHYSICS D-APPLIED PHYSICS, vol. 49, no. 40, pp. 0–0, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94414.