Self-training Guided Adversarial Domain Adaptation For Thermal Imagery

2021-01-01
Akkaya, Ibrahim Batuhan
Altinel, Fazil
Halıcı, Uğur
Deep models trained on large-scale RGB image datasets have shown tremendous success. It is important to apply such deep models to real-world problems. However, these models suffer from a performance bottleneck under illumination changes. Thermal IR cameras are more robust against such changes, and thus can be very useful for the real-world problems. In order to investigate efficacy of combining feature-rich visible spectrum and thermal image modalities, we propose an unsupervised domain adaptation method which does not require RGB-to-thermal image pairs. We employ large-scale RGB dataset MS-COCO as source domain and thermal dataset FLIR ADAS as target domain to demonstrate results of our method. Although adversarial domain adaptation methods aim to align the distributions of source and target domains, simply aligning the distributions cannot guarantee perfect generalization to the target domain. To this end, we propose a self-training guided adversarial domain adaptation method to promote generalization capabilities of adversarial domain adaptation methods. To perform self-training, pseudo labels are assigned to the samples on the target thermal domain to learn more generalized representations for the target domain. Extensive experimental analyses show that our proposed method achieves better results than the state-of-theart adversarial domain adaptation methods. The code and models are publicly available.(1)
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Suggestions

Paired 3D Model Generation with Conditional Generative Adversarial Networks
Öngün, Cihan; Temizel, Alptekin (2018-09-14)
Generative Adversarial Networks (GANs) are shown to be successful at generating new and realistic samples including 3D object models. Conditional GAN, a variant of GANs, allows generating samples in given conditions. However, objects generated for each condition are different and it does not allow generation of the same object in different conditions. In this paper, we first adapt conditional GAN, which is originally designed for 2D image generation, to the problem of generating 3D models in different rotat...
A pixel-by-pixel learned lossless image compression method with parallel decoding
Gümüş, Sinem; Kamışlı, Fatih; Department of Electrical and Electronics Engineering (2022-7)
The success of deep learning in computer vision applications has led to the use of learning based algorithms also in image compression. Learning based lossless image compression algorithms can be divided into three categories, namely, pixel-by-pixel (or masked convolution based) algorithms, prior based algorithms and latent representation based algorithms. In the pixel-by-pixel algorithms, each pixel’s probability distribution is obtained by processing the previously coded left and upper neighbouring pixels...
Automatic target recognition of quadcopter type drones from moderately-wideband electromagnetic data using convolutional neural networks
Güneri, Rutkay; Sayan, Gönül; Department of Electrical and Electronics Engineering (2022-12-15)
In this thesis, the classifier design approach based on “Learning by a Convolutional Neural Network (CNN)” will be applied to two different target library/data sets; an ultra-wideband simulation data (from 37 MHz to 19.1 GHz) obtained for a target library of four dielectric spheres, and a moderately-wide band measurement data (from 3.1 to 4.8 GHz) obtained for a target library of four quadcopter type unmanned aerial vehicles (UAVs). While the bandwidth of simulation data for spherical targets is about nine ...
DEEP LEARNING-BASED UNROLLED RECONSTRUCTION METHODS FOR COMPUTATIONAL IMAGING
Bezek, Can Deniz; Öktem, Sevinç Figen; Department of Electrical and Electronics Engineering (2021-9-08)
Computational imaging is the process of forming images from indirect measurements using computation. In this thesis, we develop deep learning-based unrolled reconstruction methods for various computational imaging modalities. Firstly, we develop two deep learning-based reconstruction methods for diffractive multi-spectral imaging. The first approach is based on plug-and-play regularization with deep denoisers whereas the second one is an end-to-end learned reconstruction based on unrolling. Secondly, we con...
Automated building detection from satellite images by using shadow information as an object invariant
Yüksel, Barış; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2012)
Apart from classical pattern recognition techniques applied for automated building detection in satellite images, a robust building detection methodology is proposed, where self-supervision data can be automatically extracted from the image by using shadow and its direction as an invariant for building object. In this methodology; first the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generate...
Citation Formats
I. B. Akkaya, F. Altinel, and U. Halıcı, “Self-training Guided Adversarial Domain Adaptation For Thermal Imagery,” presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), ELECTR NETWORK, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94425.