Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Control of a mıssle to follw a moving terget.
Download
023342.pdf
Date
1992
Author
Ergin, Hakan
Metadata
Show full item record
Item Usage Stats
56
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/9535
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Control of a satellite with flexible smart beam during slew maneuver
Ürek, Halime; Tekinalp, Ozan; Department of Aerospace Engineering (2011)
In this thesis, an attitude control system based on Linear Quadratic Regulator (LQR) technique is developed for a hypothetical Earth observation satellite with a long flexible boom. To improve pointing performance of the satellite, the piezoelectric actuators are used as well. The boom is rectangular made of aluminum with the surface bonded piezoelectric layers on all four surfaces. The boom is modeled using finite elements. The pointing performance of the satellite using various metrics is evaluated throug...
Control of an underactuated system around a periodic orbit
Duyul, Ayşe Deniz; Alatan, Abdullah Aydın; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2018)
Quasi-periodic behavior is one of the most important fundamental building blocks for locomotion in biological (and robotic) systems. The dynamics that govern the motion of such behaviors are generally highly nonlinear and underactuated. One method of analyzing the quasi-periodic behaviors of such systems is to linearize the system around these periodic trajectories. Such a linearization provides us a linear time periodic (LTP) system around the neighborhood of the periodic orbit. Analysis and control of LTP...
Control of a Quadrotor Formation Carrying a Slung Load Using Flexible Bars
Tekinalp, Ozan (2019-06-17)
Control of hexapedal pronking through a dynamically embedded spring loaded inverted pendulum template
Ankaralı, Mustafa Mert; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2010)
Pronking is a legged locomotory gait in which all legs are used in synchrony, usually resulting in slow speeds but long flight phases and large jumping heights that may potentially be useful for mobile robots locomoting in cluttered natural environments. Instantiations of this gait for robotic systems suffer from severe pitch instability either due to underactuated leg designs, or the open-loop nature of proposed controllers. Nevertheless, both the kinematic simplicity of this gait and its dynamic nature su...
Control of Flow Structure over a Nonslender Delta Wing Using Periodic Blowing
Cetin, Cenk; Celik, Alper; Yavuz, Mehmet Metin (2018-01-01)
The effect of unsteady blowing through the leading edge on the flow structure over a 45 deg swept delta wing in relation to the steady blowing is experimentally studied in a low-speed wind tunnel using the techniques of surface-pressure measurements, particle image velocimetry, and laser-illuminated smoke visualization. The unsteady blowing in the form of a periodic square pattern at 25% duty cycle is provided at the excitation frequencies varying from 2 to 24 Hz for a fixed momentum coefficient. The flow s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ergin, “Control of a mıssle to follw a moving terget.,” Middle East Technical University, 1992.