RGD-Modified Titanium as an Improved Osteoinductive Biomaterial for Use in Dental and Orthopedic Implants

2022-02-01
Seemann, Alexandra
Akbaba, Sema
Buchholz, Jessica
Tuerkkan, Sibel
Tezcaner, Ayşen
Woche, Susanne K.
Guggenberger, Georg
Kirschning, Andreas
Draeger, Gerald
This study describes the synthesis, surface analysis, and biological evaluation of bioactive titanium surfaces. The aim was to achieve an improved effect on osteoinduction in dental and orthopedic implants. For this purpose, a chemistry was developed, which allows to bind the bioactive cyclopeptide cRGDfK covalently to biomedically used titanium via polyethylene glycol linkers of different lengths. The chemical process is practicable, robust, and metal-free. The resulting chemically modified titanium plates show improved osteoinductive properties. The modification with cRGDfK targets the integrin alpha(v)beta(3), which is highly expressed in osteoblasts and is essential for many basic functions in the development of bone tissue. The successful immobilization of cRGDfK on titanium surfaces has been demonstrated by contact angle measurements and X-ray photoelectron spectroscopy. We show in in vitro studies that the presence of the cRGDfK peptide on titanium surfaces has a positive effect on bone formation.
BIOCONJUGATE CHEMISTRY

Suggestions

Collagen/PEO/gold nanofibrous matrices for skin tissue engineering
Akturk, Omer; Keskin, Dilek (The Scientific and Technological Research Council of Turkey, 2016-01-01)
As a novel approach in skin tissue engineering, gold nanoparticles (AuNPs) were synthesized and incorporated at different concentrations into collagen/PEO nanofibrous matrices in this study. The group containing 14.27 ppm AuNPs (CM-Au) had the best nanofibrous morphology. CM-Au was cross-linked with glutaraldehyde vapor (CM-AuX). All groups were disrupted in collagenase in 2 h, but cross-linked groups and Matriderm (R) resisted hydrolytic degradation for 7 and 14 days, respectively. Due to its small pores a...
Computational modelling of electro-active polymers
Dal, Sinan Fırat; Göktepe, Serdar; Department of Civil Engineering (2019)
This study is concerned with the stability of Electro-Active Polymers (EAPs) having geometries with periodic microstructures subjected to coupled electromechanical effects. For this purpose, coupled electromechanical equations, which are nonlinear, are discretized using the Finite Element Method (FEM) under the prescribed boundary conditions. EAPs are smart materials that may undergo large mechanical deformations when subjected to an electric field. Unlike many other materials that show permanent deformatio...
Experimental investigation of surface roughness effects on the flow boiling of R134a in microchannels
Jafari, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Bayer, Özgür (2016-12-01)
This study experimentally investigates the effect of surface roughness on the hydrodynamic and thermal performance of microchannel evaporators. Three micro-evaporators of the same dimensions and different surface roughness have been fabricated by micro-WEDM. Each micro-evaporator consists of forty rectangular microchannels of 700 mu m height, 250 mu m width, and 19 mm length. A microscale vapor compression refrigeration cycle has been constructed to carry out the experiments. R134a is used as the refrigeran...
Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
Synthesis and characterization of optical, electrochemical and photovoltaic properties of selenophene bearing benzodithiophene based alternating polymers
Atli, Gulten Ozkul; Alemdar, Eda; Taşkaya Aslan, Sultan; Udum, Yasemin Arslan; Toppare, Levent Kamil; Çırpan, Ali (Elsevier BV, 2020-04-01)
In this study two donor-acceptor type alternating polymers containing electron-deficient benzotriazole moiety and electron-rich selenophene bearing benzodithiophene moiety; P1 and P2, were designed and synthesized via Stille polymerization. Moreover, the effects of thiophene and selenophene as pi-bridges on optical, electrochemical and optoelectronic features of polymers were examined. The optical band gap values of P1 and P2 were found as 1.47 eV and 1.72 eV, respectively. Cyclic voltammetry studies were p...
Citation Formats
A. Seemann et al., “RGD-Modified Titanium as an Improved Osteoinductive Biomaterial for Use in Dental and Orthopedic Implants,” BIOCONJUGATE CHEMISTRY, vol. 33, no. 2, pp. 294–300, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96518.