Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights

2022-05-01
Imgharn, Abdelaziz
Anchoum, Lahoucine
Hsini, Abdelghani
Naciri, Yassine
Laabd, Mohamed
Mobarak, Mohamed
Aarab, Nouh
Bouzıanı, Asmae
Szunerits, Sabine
Boukherroub, Rabah
Lakhmiri, Rajae
Albourine, Abdallah
A polyaniline@Fe-ZSM-5 composite was synthesized via an in situ interfacial polymerization procedure. The morphology, crystallinity, and structural features of the as-developed PANI@Fe-ZSM-5 composite were assessed using scanning electron microscopy – energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The composite was efficiently employed for the first time as an adsorbent Orange G (OG) dyestuff from water. The OG dye adsorption performance was investigated as a function of several operating conditions. The kinetic study demonstrated that a pseudo-second-order model was appropriate to anticipate the OG adsorption process. The maximum adsorption capacity was found to be 217 mg/g. The adsorption equilibrium data at different temperatures were calculated via advanced statistical physics formalism. The entropy function indicated that the disorder of OG molecules improved at low concentrations and lessened at high concentrations. The free enthalpy and internal energy functions suggested that the OG adsorption was a spontaneous process and physisorption in nature. Regeneration investigation showed that the PANI@Fe-ZSM-5 could be effectively reused up to five cycles. The main results of this work provided a deep insight on the experimental study supported by advanced statistical physics prediction for the adsorption of Orange G dye onto the novel polyaniline@Fe-ZSM-5 hybrid composite. Additionally, the experimental and advanced statistical physics findings stated in this study may arouse research interest in the field of wastewater treatment.

Suggestions

Synthesis and separation properties of B-ZSM-5 zeolite membranes on monolith supports
Kalıpçılar, Halil; Noble, RD; Falconer, JL (2002-12-01)
Alumina-coated, silicon carbide monoliths were used as supports for B-ZSM-5 zeolite membranes, which were synthesized by in situ hydrothermal crystallization. Both 2 turn x 2 mm (66 channels) and 4 mm x 4 mm (22 channels) monoliths with effective membrane area/volume ratios of 10.6 and 7.2 cm(2)/cm(3), respectively, were used. The membranes separated C-4 and C-6 hydrocarbon isomer vapor mixtures with high selectivities. The selectivities and permeances were comparable to tubular ZSM-5 membranes for butane i...
Contribution of Pd Membrane to Dehydrogenation of Isobutane Over a New Mesoporous Cr/MCM-41 Catalyst
ÇETİNYOKUŞ, SALİHA; DOĞAN, MELTEM; Doğu, Timur (2016-06-01)
A chromium incorporated mesoporous silicate structured Cr/MCM-41 type catalyst was synthesized following a one-pot hydrothermal route and tested in dehydrogenation of isobutane to isobutene in a Pd membrane reactor. Characterization results of the catalyst proved that it had ordered pore structure with a narrow pore size distribution. This catalyst showed quite high activity for the dehydrogenation of isobutane. Membrane reactor tests performed at 823 K proved the advantages of in-situ removal of produced h...
Electrochromic properties of 'Trimeric' thiophene-pyrrole-thiophene derivative grown from electrodeposited 6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexan-1-amine and its copolymer
Tarkuc, Simge; Ak, Metin; Onurhan, Erdal; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
A centrosymmetric polymer precursor, namely 6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexan-1-amine (TPHA), was synthesized via a Knorr-Paal reaction using 1,4-di(2-thienyl)-1,4-butanedione and hexane-1,6-diamine. The resultant monomer was characterized by Nuclear Magnetic Resonance (H-1-NMR). Electroactivity of TPHA was investigated via cyclic voltammetry. The electronic structure and the nature of electrochromism in P(TPHA) and its copolymer with EDOT, (P(TPHA-co-EDOT)), were examined via spectroelectrochem...
Use of a thiophene-based conducting polymer in microbial biosensing
ODACI DEMİRKOL, DİLEK; Kayahan, Senem; TİMUR, SUNA; Toppare, Levent Kamil (Elsevier BV, 2008-05-01)
Immobilization of whole viable Pseudomonas fluorescens cells was achieved on a graphite electrode modified with a thiophene-based conducting polymer. Microbial electrodes were constructed by the entrapment of bacterial cells on conducting copolymer matrix using a dialysis membrane. The biosensor was characterized using glucose as the substrate. As well as analytical characterization, effects of electropolymerization time, pH and temperature on the sensor response were examined. Finally, operational stabilit...
Development of a novel PANI@WO3 hybrid composite and its application as a promising adsorbent for Cr(VI) ions removal
Hsini, Abdelghani; Naciri, Yassine; Laabd, Mohamed; Bouzıanı, Asmae; Navío, J.A.; Puga, F.; Boukherroub, Rabah; Lakhmiri, Rajae; Albourine, Abdallah (2021-10-01)
In the current study, an in-situ oxidative polymerization method was used to synthesize polyaniline-coated tungsten trioxide biphasic composite (PANI@WO3). The as-developed composite material properties were elucidated using different characterization tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), N2 sorption-desorption isotherm, and X-ray photoelect...
Citation Formats
A. Imgharn et al., “Effectiveness of a novel polyaniline@Fe-ZSM-5 hybrid composite for Orange G dye removal from aqueous media: Experimental study and advanced statistical physics insights,” Chemosphere, vol. 295, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124211446&origin=inward.