Structural and temperature-tuned band gap energy characteristics of PbMoO4 single crystals

2022-04-01
Isik, M.
Hasanlı, Nızamı
Darvishov, N.H.
Bagiev, V.E.
PbMoO4 is one of the member of the molybdate materials and has been a significant research interest due to its photocatalytic and optoelectronic applications. In the present paper, the structural and optical properties of PbMoO4 single crystals grown by Czochralski technique were investigated. X-ray diffraction pattern presented well-defined and intensive peaks associated with tetragonal scheelite structure. Energy dispersive spectroscopy analyses presented the atomic compositional ratio of constituent elements as consistent with chemical formula of PbMoO4. Raman and infrared transmittance spectra were reported to give information about the vibrational characteristics of the compound. Room temperature transmission spectrum was analyzed by derivative spectroscopy technique and band gap energy was found as 3.07 eV. Temperature-tuned band gap energy characteristics of the single crystal were investigated by performing transmission measurements at different temperatures between 10 and 300 K. The analyses indicated that band gap energy of the PbMoO4 single crystal increases to 3.24 eV when the temperature was decreased to 10 K. Temperature-band gap energy dependency was studied considering Varshni and Bose-Einstein models. The successful fitting processes under the light of applied models presented various optical parameters like absolute zero band gap energy, variation rate of band gap with temperature and Debye temperature.
Optical Materials

Suggestions

Structural and temperature-tuned bandgap characteristics of thermally evaporated beta-In2S3 thin films
Surucu, O.; Isik, M.; Terlemezoglu, M.; Hasanlı, Nızamı; Parlak, M. (2021-05-01)
In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated beta-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309...
Structural, mechanical, and biocompatibility investigations of yttrium and fluoride doped nano hydroxyapatite
Burçin, Başar; Evis, Zafer; Department of Engineering Sciences (2009)
In this study, it was aimed to investigate the structural, mechanical and biological properties of nano hydroxyapatite (HA) doped with yttrium and fluoride with different compositions. HAs were synthesized by precipitation method. After sintering at 900oC, 1100oC or 1300oC for 1 hour, the structural properties of HAs were investigated by XRD, FTIR spectroscopy and SEM. High relative densities (above 88 % of relative density) were achieved after sintering. No second phases were observed in XRD measurements. ...
Structural and optical properties of thermally evaporated (GaSe)0.75-(GaS)0.25 thin films
Isik, M.; Emir, C.; Hasanlı, Nızamı (2021-03-01)
GaSe and GaS binary semiconducting compounds are layered structured and have been an attractive research interest in two-dimensional material research area. The present paper aims at growing (GaSe)0.75 - (GaS)0.25 (or simply GaSe0.75S0.25) thin film and investigating its structural and optical properties. Thin films were prepared by thermal evaporation technique using evaporation source of its single crystal grown by Bridgman method. The structural properties were revealed using x-ray diffraction (XRD), ene...
Structural and electronic properties of bamboo-like carbon nanostructure
Erkoç, Şakir (Elsevier BV, 2006-01-01)
The structural and electronic properties of bamboo-like carbon nanostructure have been investigated qualitatively by performing semi-empirical self-consistent-field molecular orbital calculations at the level of the PM3 method within the RHF formulation. It has been found that these structures are stable and endothermic. Bamboo-like carbon nanostructures resemble zigzag carbon nanotubes capped with a plane graphine sheet.
Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys
Kart, S. Ozdemir; Tomak, Mehmet; Uludogan, M.; Cagin, T. (Elsevier BV, 2006-11-05)
The solidification properties of Pd-Ni alloys are studied with constant-pressure, constant-temperature (TPN), and constant-volume, constant-temperature (TVN) molecular dynamics simulations based on quantum Sutton-Chen potential. Whether the system forms the glass structure or it transforms into ordered state is checked at various cooling rates ranging from 10 K/ps to 0.05 K/ps. The effect of concentration and cooling rates on the glass transition temperature is examined. The behavior of heat capacity at con...
Citation Formats
M. Isik, N. Hasanlı, N. H. Darvishov, and V. E. Bagiev, “Structural and temperature-tuned band gap energy characteristics of PbMoO4 single crystals,” Optical Materials, vol. 126, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126102756&origin=inward.