SRBF_Soft: a Python-based open-source software for regional gravity field modeling using spherical radial basis functions based on the data-adaptive network design methodology

2022-03-01
Uluğ, Raşit
Karslıoğlu, Mahmut Onur
This study introduces a novel open-source Python software package called SRBF_Soft for the high-resolution regional gravity field determination using various spherical radial basis functions (SBRFs) in terms of point mass, Poisson, and Poisson wavelet kernel. The modeling approach considers residual gravity field functionals generated by the well-known remove-compute-restore (RCR) technique where the long and short wavelength parts of the gravity signal are provided by a global geopotential model (GGM) and digital terrain model (DTM), respectively. A new data-adaptive network design methodology called k-SRBF is used to construct a network of SRBFs. The appropriate bandwidths (depths) are chosen using the generalized cross-validation (GCV) technique. The unknown SRBFs coefficients are estimated by applying the least-squares method where the extended Gauss Markov Model (GMM) with additional prior information is applied if the normal equation matrix is ill-conditioned. In such a case, the optimal regularization parameter is determined by variance component estimation (VCE). By utilizing parallel processing in every stage of the RCR technique, including creating the design matrix, the computational time is remarkably decreased relative to the number of processors used in the modeling. The performance of the software has been tested and validated in the Auvergne test area (France) on the basis of real terrestrial gravity data. The differences between estimated and observed height anomaly points (GNSS/leveling) amount to about 3 cm in terms of standard deviation (STD) for all kernels indicating that the SRBF_Soft possesses the capability to be applied in regional gravity field modeling as an efficient and reliable software.
EARTH SCIENCE INFORMATICS

Suggestions

Implementation Studies of Robot Swarm Navigation Using Potential Functions and Panel Methods
Merheb, Abdel-Razzak; GAZİ, VEYSEL; Sezer Uzol, Nilay (2016-10-01)
This paper presents a practical swarm navigation algorithm based on potential functions and properties of inviscid incompressible flows. Panel methods are used to solve the flow equations around complex shaped obstacles and to generate the flowlines, which provide collision-free paths to the goal position. Safe swarm navigation is achieved by following the generated streamlines. Potential functions are used to achieve and maintain group cohesion or a geometric formation during navigation. The algorithm is i...
SLW model for computational fluid dynamics modeling of combustion systems: Implementation and validation
Ozen, Guzide; Selçuk, Nevin (2016-01-01)
Spectral Line-Based Weighted Sum of Gray Gases (SLW) model was implemented to Computational Fluid Dynamics (CFD) Solver, ANSYS FLUENT. Discrete Ordinate Method (DOM) available in ANSYS FLUENT was used as Radiative Transfer Equation (RTE) Solver. ANSYS FLUENT with SLW was applied to the prediction of incident heat fluxes for three test problems; two containing isothermal homogenous/nonhomogenous water vapor and one isothermal water vapor/carbon dioxide mixture. Predictive accuracy of SLW in ANSYS FLUENT was ...
Experimental Analysis and FPGA Implementation of the Real Valued Time Delay Neural Network Based Digital Predistortion
Yesil, Soner; Sen, Cansu; Yılmaz, Ali Özgür (2019-01-01)
This paper presents an FPGA implementation of the Real Valued Time Delay Neural Network (RVTDNN) based digital predistortion with a very low resource utilization and high throughput. The implementation exploits efficient utilization of FPGA primitives and approximation of activation functions that can be realized with simple logic operations. The proposed modifications and constraints on the algorithms have been decided and verified based on a closed-loop adaptive hardware setup including RFHIC RWP03040-1H ...
Radar cross section analysis by shooting and bouncing rays method
Çakır, Mustafa Kağan; Tokdemir, Turgut; Department of Engineering Sciences (2015)
In this study, a MATLAB code incorporating `Shooting and Bouncing Rays (SBR) Method` is developed for calculating Radar Cross Section (RCS) of complex shapes. The code can calculate ray paths, magnetic current sheets, incident and scattered electric fields and RCS in horizontal, vertical and cross polarizations. While reflection effects are calculated by SBR algorithm, diffraction effects due to edges and corners are handled by `Equivalent Edge Currents (EEC’s)`. Wave frequency, aspect angle and number of r...
GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms
DAĞ, OSMAN; Yozgatlıgil, Ceylan (2016-08-01)
Group Method of Data Handling (GMDH)-type neural network algorithms are the heuristic self organization method for the modelling of complex systems. GMDH algorithms are utilized for a variety of purposes, examples include identification of physical laws, the extrapolation of physical fields, pattern recognition, clustering, the approximation of multidimensional processes, forecasting without models, etc. In this study, the R package GMDH is presented to make short term forecasting through GMDH-type neural n...
Citation Formats
R. Uluğ and M. O. Karslıoğlu, “SRBF_Soft: a Python-based open-source software for regional gravity field modeling using spherical radial basis functions based on the data-adaptive network design methodology,” EARTH SCIENCE INFORMATICS, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97194.