Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
High performance non-binary spatially-coupled codes for flash memories
Download
index.pdf
Date
2018-01-31
Author
Hareedy, Ahmed
Esfahanizadeh, Homa
Dolecek, Lara
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
110
views
31
downloads
Cite This
Modern dense Flash memory devices operate at very low error rates, which require powerful error correcting coding (ECC) techniques. An emerging class of graph-based ECC techniques that has broad applications is the class of spatially-coupled (SC) codes, where a block code is partitioned into components that are then rewired multiple times to construct an SC code. Here, our focus is on SC codes with the underlying circulant-based structure. In this paper, we present a three-stage approach for the design of high performance non-binary SC (NB-SC) codes optimized for practical Flash channels; we aim at minimizing the number of detrimental general absorbing sets of type two (GASTs) in the graph of the designed NB-SC code. In the first stage, we deploy a novel partitioning mechanism, called the optimal overlap partitioning, which acts on the protograph of the SC code to produce optimal partitioning corresponding to the smallest number of detrimental objects. In the second stage, we apply a new circulant power optimizer to further reduce the number of detrimental GASTs. In the third stage, we use the weight consistency matrix framework to manipulate edge weights to eliminate as many as possible of the GASTs that remain in the NB-SC code after the first two stages (that operate on the unlabeled graph of the code). Simulation results reveal that NB-SC codes designed using our approach outperform state-of-the-art NB-SC codes when used over Flash channels.
Subject Keywords
Niobium
,
Block codes
,
Conferences
,
Flash memories
,
Performance evaluation
,
Error correction codes
URI
https://hdl.handle.net/11511/98519
DOI
https://doi.org/10.1109/itw.2017.8277940
Conference Name
2017 IEEE Information Theory Workshop, ITW 2017
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Combinatorial Methodology for Optimizing Non-Binary Graph-Based Codes: Theoretical Analysis and Applications in Data Storage
Hareedy, Ahmed; Lanka, Chinmayi; Guo, Nian; Dolecek, Lara (2019-04-01)
© 2018 IEEE.Non-binary (NB) low-density parity-check (LDPC) codes are graph-based codes that are increasingly being considered as a powerful error correction tool for modern dense storage devices. Optimizing NB-LDPC codes to overcome their error floor is one of the main code design challenges facing storage engineers upon deploying such codes in practice. Furthermore, the increasing levels of asymmetry incorporated by the channels underlying modern dense storage systems, e.g., multi-level Flash systems, exa...
High Rate Communication over One-Bit Quantized Channels via Deep Learning and LDPC Codes
Balevi, Eren; Andrews, Jeffrey G. (2020-05-01)
This paper proposes a method for designing error correction codes by combining a known coding scheme with an autoencoder. Specifically, we integrate an LDPC code with a trained autoencoder to develop an error correction code for intractable nonlinear channels. The LDPC encoder shrinks the input space of the autoencoder, which enables the autoencoder to learn more easily. The proposed error correction code shows promising results for one-bit quantization, a challenging case of a nonlinear channel. Specifical...
Highly Accurate Clock Synchronization With Drift Correction for the Controller Area Network
Akpinar, Murat; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2022-12-01)
Modem vehicles, that have to be considered as safety-critical cyber-physical systems, require highly accurate clock synchronization (CS) among their distributed computing devices. Since Controller Area Network (CAN) is the predominant in-vehicle communication bus, it is highly relevant to support CS for CAN. This article proposes an original CS method for distributed in-vehicle networks based on CAN with both offset and drift correction. While offset correction is performed based on timestamps in periodic r...
Power-delay optimized VLSI threshold detection circuits and their use in parallel integer multiplication
Ercan, Furkan; Muhtaroğlu, Ali; Sustainable Environment and Energy Systems (2015-6)
Threshold detection is a fundamental logic function that has broad use in arithmetic processors, and other digital applications. Thus, any improvement in threshold detection in terms of power and/or delay contributes significantly to the field of digital circuit design. A recently reported parallel integer multiplier architecture, ABACUS, uses column compression networks to compress partial products through the final addition network. Architecture of column compression network of ABACUS is suitable for thre...
Optimized Transmission of 3D Video over DVB-H Channel
Bugdayci, Done; Akar, Gözde; Gotchev, Atanas (2012-01-17)
In this paper, we present a complete framework of an end-to-end error resilient transmission of 3D video over DVB-H and provide an analysis of transmission parameters. We perform the analysis for various layering, protection strategy and prediction structure using different contents and different channel conditions.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-binary spatially-coupled codes for flash memories,” Kao-hsiung, Tayvan, 2018, vol. 2018-January, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/98519.