Tufan, Yiğithan
Oztatli, Hayriye
Ercan, Batur


Optical characterization of silicon based hydrogenated amorphous thin films by un-visible and infrared measurements
Kılıç, İlker; Katırcıoğlu, Bayram; Department of Physics (2006)
Various carbon content hydrogenated amorphous silicon carbide (a-Si1ŁxCx:H) and hydrogenated amorphous silicon (a-Si:H) thin films have been deposited on various substrates by using plasma enhanced chemical vapour deposition (PECVD) technique. Transmission spectra of these films have been determined within UV-Visible region and the obtained data were analysed to find related physical constants such as; refractive indices, thicknesses, etc. Fourier transform infrared (FT-IR) spectrometry technique has been u...
Photoluminescence study of ge-implanted gase and inse single crystals grown by bridgman method
Bilgi, Seda; Akınoğlu, Bülent Gültekin; Department of Physics (2006)
In this study, photoluminescence properties of as grown, Ge implanted GaSe and InSe crystals with doses 1013, 1014, and 1015 ions/cm2 and 1015 ions/cm2 Ge implanted and annealed GaSe and InSe single crystals grown by using 3-zone vertical Bridgman-Stockbarger system have been studied by photoluminescence spectroscopy (PL). PL spectra of as grown and implanted GaSe samples with three different doses have been studied in the ranges within the wavelength interval 570-850 nm and in the temperature ranges betwee...
Photoelectron, compton and characteristic x-ray escape from an HPGe detector in the range 8-52 keV
Yilmaz, E; Can, Cüneyt (Wiley, 2004-11-01)
Escape of photoelectrons, Compton-scattered photons and Ge x-rays from an HPGe detector was studied as a function of energy in the range 8-52 keV. A variable-energy source producing Cu, Rb, Mo, Ag, Ba. and Tb x-rays was used. All three mechanisms for energy loss were observed in the same experiment for Ba and Tb, while only x-ray and photoelectron escapes were evident in the spectra for Ag, Mo, Rb, and Cu. Spectral features and possible mechanisms for partial energy deposition were investigated. A Monte Car...
Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes
ORHAN, Tugba; Isitman, Nihat Ali; Hacaloğlu, Jale; Kaynak, Cevdet (2012-03-01)
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed thro...
Biotechnological modification of steroidal structures
Erkılıç, Umut; Demir, Ayhan Sıtkı; Department of Biotechnology (2008)
Steroids are important biological regulators existing in hormones which are used to control metabolism of the body. There are widespread applications in the pharmaceutical industry. Drugs of steroid nature - anti-inflammatory and antiallergic corticosteroids, diuretics, anabolics, androgens, gestagens, contraceptives, antitumor medications, etc. - are now widely used in human and veterinary medicine. Nowadays, biotechnological modifications of steroids are preferred over chemical modifications as a green ch...
Citation Formats
Y. Tufan, H. Oztatli, B. GARİPCAN, and B. Ercan, “ELECTRICALLY CONDUCTIVE BIODEGRADABLE SILK FIBROIN/CARBON NANOFIBER SCAFFOLDS FOR CARDIAC TISSUE ENGINEERING,” TISSUE ENGINEERING PART A, vol. 28, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/99068.