Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Embedding information on additively manufactured parts using Mondrian patterns
Date
2021-11-01
Author
Talhouet , Kilyan Emre
Yaman, Ulaş
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
45
views
0
downloads
Cite This
With Additive Manufacturing (AM), parts having complex geometries can be produced easily compared to the traditional manufacturing methods. AM gives the opportunity to produce those complex parts in a very straightforward manner. This simplification creates the capability of embedding different structures, patterns or assets to the part without the burden of additional manufacturing processes. It has been observed that the most common approach for this purpose is to use QR codes. This article discusses a different method combining science and art together. A simple coding approach inspired by the Dutch painter Mondrian, who is known to have paintings consisting of grids and contrast colors, has been developed. In this paper, details of the proposed method to embed information onto the AM parts are presented and results are discussed.Article Details
URI
https://journals.infinite-science.de/index.php/jamtech/article/view/586
https://hdl.handle.net/11511/99355
Conference Name
Additive Manufacturing Conference
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Manufacturing of copper cold plates via metal fused filament fabrication and their characterization
Bacıkoğlu, Mehmet Canberk; Yaman, Ulaş; Department of Mechanical Engineering (2023-1)
Unlike traditional manufacturing methods, Additive Manufacturing (AM) is one of the most popular methods to produce parts with complex geometries using a wide range of materials. Atomic Diffusion Additive Manufacturing (ADAM) is an AM method to manufacture metal parts by using filaments which include metal powders encased in plastic binders. Various types of materials can be 3D printed with this method, including stainless steel, copper, tool steel, Inconel, and titanium. In this study, ADAM method is used ...
A composite dislocation cell model to describe strain path change effects in BCC metals
Yalçınkaya, Tuncay; Geers, M.G.D. (IOP Publishing, 2009-11-16)
Sheet metal forming processes are within the core of many modern manufacturing technologies, as applied in, e.g., automotive and packaging industries. Initially flat sheet material is forced to transform plastically into a three-dimensional shape through complex loading modes. Deviation from a proportional strain path is associated with hardening or softening of the material due to the induced plastic anisotropy resulting from the prior deformation. The main cause of these transient anisotropic effects at m...
Use of a nozzle with a rectangular orifice on a hybrid FFF system
Gharehpapagh, Bahar; Dilberoğlu, Mecid Uğur; Dölen, Melik; Yaman, Ulaş (2021-11-01)
Fused Filament Fabrication (FFF) process has lower surface roughness quality, precision and it takes longer to fabricate compared to the conventional manufacturing operations and some additive manufacturing technologies. In order to overcome these issues, a rotary extruder head with a nozzle having a rectangular orifice has been utilized in this work. A new tool path planning for a rectangular nozzle is designed to increase the efficiency of the extrusion process by this nozzle. As a result, finer features ...
Use of a nozzle with a rectangular orifice on a hybrid FFF system
Gharehpapagh, Bahar; Dilberoğlu, Mecid Uğur; Dölen, Melik; Yaman, Ulaş (2021-11-01)
Fused Filament Fabrication (FFF) process has lower surface roughness quality, precision and it takes longer to fabricate compared to the conventional manufacturing operations and some additive manufacturing technologies. In order to overcome these issues, a rotary extruder head with a nozzle having a rectangular orifice has been utilized in this work. A new tool path planning for a rectangular nozzle is designed to increase the efficiency of the extrusion process by this nozzle. As a result, finer features ...
Effect of annealing on the mechanical properties of pla parts produced by fused filament fabrication
Aydın, Sencer; Özerinç, Sezer; Department of Micro and Nanotechnology (2021-9-01)
Additive manufacturing has become a disruptive technology for the production of load bearing components in a wide range of applications. Fused filament fabrication (FFF) is among the most effective and economical techniques for the printing of polymeric parts. There are numerous thermoplastic materials suitable for FFF. Among these, Polylactic acid (PLA) is a renewable, sustainable and cost-effective alternative. For better utilization of PLA parts produced by FFF, there is a need to understand the structur...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. E. Talhouet and U. Yaman, “Embedding information on additively manufactured parts using Mondrian patterns,” İstanbul, Türkiye, 2021, vol. 1, Accessed: 00, 2022. [Online]. Available: https://journals.infinite-science.de/index.php/jamtech/article/view/586.