Temperature effects on optical characteristics of thermally evaporated CuSbSe2 thin films for solar cell applications

Surucu, O.
Isik, M.
Terlemezoglu, M.
Bektas, T.
Hasanlı, Nızamı
Parlak, Mehmet
© 2022 Elsevier B.V.CuSbSe2 thin film was deposited by co-evaporation of binary CuSe and Sb2Se3 sources. The structural and morphological properties of the deposited thin film were investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis measurements. XRD pattern indicated that deposited thin film has an orthorhombic crystalline structure with the preferential orientation of (013) direction. SEM image presented that the thin film surface is almost uniform. The optical characteristics of the deposited CuSbSe2 thin film were investigated in detail by performing room temperature Raman, temperature-dependent transmittance spectroscopy, and photoluminescence techniques. Raman spectrum exhibited one mode at around 210 cm−1 associated with Ag vibrational mode. The derivative spectroscopy technique was used to obtain the band gap energy of the films. Temperature dependence of band gap energy was investigated by considering the Varshni model. The rate of change of band gap energy, absolute zero value of gap energy, and Debye temperature were determined as −1.3 × 10−4 eV/K, 1.21 eV, and 297 ± 51 K, respectively. The photoluminescence spectrum indicated the room temperature direct band gap energy as 1.30 eV.
Optical Materials


Structural characteristics of thermally evaporated Cu0.5Ag0.5InSe2 thin films
Gullu, H. H.; Parlak, Mehmet (2016-05-01)
In this work, Cu0.5Ag0.5InSe2 (CAIS) thin film samples were prepared by thermal evaporation of Cu, Ag, InSe and Se evaporants sequentially on glass substrates. Following the deposition, annealing processes were applied at different temperatures. The as-grown and annealed CAIS samples were nearly stoichiometric in the detection limit of the compositional measurement. The x-ray diffraction (XRD) measurements revealed that they were in polycrystalline structure with a preferred orientation along the (112) dire...
Temperature dependence of electrical properties in Cu0.5Ag0.5InSe2/Si heterostructure
Gullu, H. H.; Parlak, Mehmet (Springer Science and Business Media LLC, 2018-07-01)
The polycrystalline Cu0.5Ag0.5InSe2 thin film was deposited on mono-crystalline n-Si wafer by sequential thermal evaporation of elemental sources. p-Cu0.5Ag0.5InSe2/n-Si heterojunction diode was fabricated and the current-voltage characteristics of the diode at various temperatures were investigated to determine the main diode parameters and dark current transport mechanism. The studied diode structure showed a rectifying behavior with a barrier height of 0.63 eV at room temperature. Series and shunt resist...
Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions
Li, R.; Yerci, Selçuk; Dal Negro, L. (2009-07-27)
The 1.54 mu m photoluminescence and decay time of Er-doped amorphous silicon nitride films with different Si concentrations are studied in the temperature range of 4 to 320 K. The temperature quenching of the Er emission lifetime demonstrates the presence of nonradiative trap centers due to excess Si in the films. The temperature dependence and the dynamics of the energy coupling between amorphous silicon nitride and Er ions are investigated at different temperatures using two independent methods, which dem...
Deposition of CZTSe thin films and illumination effects on the device properties of Ag/n-Si/p-CZTSe/In heterostructure
Bayrakli, O.; Terlemezoğlu, Makbule; GULLU, H. H.; Parlak, Mehmet (2017-06-30)
Characterization of Cu2ZnSnSe4 (CZTSe) thin films deposited by thermal evaporation sequentially from the pure elemental sources and in-situ post annealing was carried out at 400 C under Se evaporation atmosphere. Another annealing process was applied in nitrogen atmosphere at 450 degrees C to get poly-crystalline monophase CZTSe film structure. XRD analysis together with Raman spectroscopy was used to determine the structural properties. Spectral optical absorption coefficient evaluated from transmission da...
Temperature-tuned optical bandgap of Al-doped ZnO spin coated nanostructured thin films
Isik, M.; Hasanlı, Nızamı (2022-08-15)
© 2022 Elsevier B.V.Al-doped ZnO (AZO) nanostructured thin films were produced by spin coating of AZO ink. The structural characteristics were determined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD plot showed well-defined and intensive diffraction peaks belonging to hexagonal crystal structure. AZO thin films were observed in the form of nanostructure with size varying generally between 20 and 30 nm in the SEM image. The room temperature bandgap energies of undoped and...
Citation Formats
O. Surucu, M. Isik, M. Terlemezoglu, T. Bektas, N. Hasanlı, and M. Parlak, “Temperature effects on optical characteristics of thermally evaporated CuSbSe2 thin films for solar cell applications,” Optical Materials, vol. 133, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85139026956&origin=inward.