Investigation of chlorinated poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry

2006-09-01
Uyar, Tamer
Oztürk, Elif
Alyürük, Kemal
Hacaloğlu, Jale
The thermal degradation of chlorinated poly(propylene oxide) and polyepichlorohydrin samples were studied with the use of direct pyrolysis mass spectrometry. The data indicated that chlorine atoms were gathered on some repeating units leaving the rest intact in case of chlorinated poly(propylene oxide). On the other hand, a more homogenous structure with a uniform thermal behavior was detected for chlorinated polyepichlorohydrin.
Journal of Macromolecular Science, Part A: Pure and Applied Chemistry

Suggestions

Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry
Uyar, T; Hacaloğlu, Jale (2002-09-01)
The thermal degradation of poly(propylene oxide), (PPO) and polyepichlorohydrin, (PECH) were studied with the use of direct pyrolysis mass spectrometry. The effects of heating rate and dissociative ionization on fragmentation pattern have also been investigated. It has been determined that PPO degrades via a random cleavage mechanism, the labile C-O bond scissions being preferred, An analogous degradation mechanism can be proposed for PECH. Yet, the elimination of side chains, evolution of HCl and the loss ...
Thermal degradation of polystyrene composites. Part I. The effect of brominated polyepoxy and antimony oxide
Kaya, Hatice; Hacaloğlu, Jale (2014-01-01)
Thermal degradation of polystyrene (PS) involving brominated polyepoxy (BA) and antimony oxide (PS/BE/Sb2O3) was studied systematically via direct pyrolysis mass spectrometry. Thermal decomposition of brominated polyepoxy was started by loss of end groups. The relative yields of high mass thermal degradation products of PS and the product distribution of brominated polyepoxy and antimony oxide were changed noticeably during the pyrolysis of PS/BE/Sb2O3 composite. Its thermal decomposition was initiated by t...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Investigation of polymerization of benzoxazines and thermal degradation characteristics of polybenzoxazines via direct pyrolysis mass spectrometry
Fam, Shahla Bagheri; Uyar, Tamer; Ishida, Hatsuo; Hacaloğlu, Jale (2012-10-01)
Polymerization of benzoxazines and thermal degradation mechanisms of polybenzoxazines were investigated using the direct pyrolysis mass spectrometry (DP-MS) technique. The benzoxazine structures were based on phenol and aniline and on bisphenol-A and methylamine or aniline. Polymerizations of the benzoxazines were carried out by curing them at elevated temperatures without addition of initiator or catalyst. DP-MS data showed the presence of chains generated by opposing polymerization reaction pathways indic...
Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry
Ozdemir, Esra; Tincer, Teoman; Hacaloğlu, Jale (2016-11-01)
In this study, melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)/PEG samples involving 10, 15 and 20 wt% PEG were prepared and characterized by direct pyrolysis mass spectrometry technique in addition to classical techniques such differential scanning calorimetry, thermogravimetric analyses and mechanical tests. The incorporation of PEG resulted in consistent and significant decrease in the tensile strength and modulus, and reduction in endothermic melting peak of PLA due to the plasticizing e...
Citation Formats
T. Uyar, E. Oztürk, K. Alyürük, and J. Hacaloğlu, “Investigation of chlorinated poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry,” Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, pp. 1399–1407, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30938.