Nonlinear optical properties of a Poschl-Teller quantum well

2005-09-01
Yildirim, H
Tomak, Mehmet
The nonlinear optical properties of quantum wells (QWs) represented by a Poschl-Teller confining potential are studied. This potential is well suited for such purposes as it can easily become asymmetrical by a correct choice of its parameter set. We calculate the linear and the third-order nonlinear optical intersubband absorption coefficients, the second-harmonic generation (SHG) susceptibility tensor, and optical rectification (OR) under the density matrix formalism. Numerical results for a typical GaAs QW are presented. The resulting SHG and the OR coefficients are much larger than their values for bulk GaAs.
PHYSICAL REVIEW B

Suggestions

Nonlinear optical properties of a Poschl-Teller quantum well under electric and magnetic fields
AYTEKİN, ÖZLEM; Turgut, Sadi; Tomak, Mehmet (2012-04-01)
The nonlinear optical properties of a Poschl-Teller Quantum well (PTQW) under electric and magnetic fields are studied. The salient feature of this potential is its flexibility. It can be made asymmetrical by a proper choice of its two parameters. Optical rectification, second and third-harmonic generation susceptibilities are calculated using the density matrix formalism. We study the effects of quantum confinement, electric and magnetic fields on all of these optical coefficients.
Linear and nonlinear intersubband optical absorptions in an asymmetric rectangular quantum well
Karabulut, I.; Atav, U.; Safak, H.; Tomak, Mehmet (2007-02-01)
The linear and nonlinear intersubband optical absorptions in AlxlGa1-xlAs/GaAs/AlxrGa1-xrAs asymmetric rectangular quantum well are studied within the framework of the density matrix formalism. We have calculated the electron energy levels and the envelope wave functions using the effective mass approach. In addition, we have obtained an expression for saturation intensity. It is shown that the parameters such as asymmetry and width of potential well not only shift the peak positions in absorption spectrum ...
Optical absorption of a quantum well with an adjustable asymmetry
Yildirim, H.; Tomak, Mehmet (Springer Science and Business Media LLC, 2006-04-01)
The effects of asymmetry and the electric field on the electronic subbands and the nonlinear intersubband optical absorption of GaAs quantum wells represented by a Poschl-Teller confining potential are studied. The potential itself can be made asymmetric through a correct choice of its parameter set and this adjustable asymmetry is important for optimizing the absorption. In that way optimal cases can be created. We calculate the modified wave functions and electronic subbands variationally. The linear and ...
Spectra of cylindrical quantum dots: The effect of electrical and magnetic fields together with AB flux field
IKHDAİR, SAMEER; Hamzavi, Majid; Sever, Ramazan (2012-12-01)
We study the spectral properties of electron quantum dots (QDs) confined in 2D parabolic harmonic oscillator influenced by external uniform electrical and magnetic fields together with an Aharonov-Bohm (AB) flux field. We use the Nikiforov-Uvarov method in our calculations. Exact solutions for the energy levels and normalized wave functions are obtained for this exactly soluble quantum system. Based on the computed one-particle energetic spectrum and wave functions, the interband optical absorption GaAs sph...
Excitonic effects on the nonlinear optical properties of small quantum dots
KARABULUT, İBRAHİM; Safak, H.; Tomak, Mehmet (IOP Publishing, 2008-08-07)
The excitonic effects on the nonlinear optical properties of small quantum dots with a semiparabolic confining potential are studied under the density matrix formalism. First, within the framework of the strong confinement approximation, we present the excitonic states and then calculate the excitonic effects on the nonlinear optical properties, such as second harmonic generation, third harmonic generation, nonlinear absorption coefficient and refractive index changes. We find the explicit analytical expres...
Citation Formats
H. Yildirim and M. Tomak, “Nonlinear optical properties of a Poschl-Teller quantum well,” PHYSICAL REVIEW B, pp. 0–0, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33378.