Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Small Is Beautiful Summarizing Scientific Workflows Using Semantic Annotations
Date
2013-07-02
Author
Alper, Pinar
Belhajjame, Khalid
Goble, Carole
Karagöz, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Scientific Workflows have become the workhorse of BigData analytics for scientists. As well as being repeatable and optimizable pipelines that bring together datasets and analysis tools, workflows make-up an important part of the provenance of data generated from their execution. By faithfully capturing all stages in the analysis, workflows play a critical part in building up the audit-trail (a.k.a. provenance) meta-data for derived datasets and contributes to the veracity of results. Provenance is essential for reporting results, reporting the method followed, and adapting to changes in the datasets or tools. These functions, however, are hampered by the complexity of workflows and consequently the complexity of data-trails generated from their instrumented execution. In this paper we propose the generation of workflow description summaries in order to tackle workflow complexity. We elaborate reduction primitives for summarizing workflows, and show how primitives, as building blocks, can be used in conjunction with semantic workflow annotations to encode different summarization strategies. We report on the effectiveness of the method through experimental evaluation using real-world workflows from the Taverna system.
Subject Keywords
Scientific workflow
,
Annotation
,
Rule-based summarization
URI
https://hdl.handle.net/11511/35235
DOI
https://doi.org/10.1109/bigdata.congress.2013.49
Collections
Department of Computer Engineering, Conference / Seminar