Utilization of I-Q signals of ultrasound Doppler velocimeter to obtain 1-D turbulence quantities in pipe flow

2014-10-01
KÖSELİ, VOLKAN
Uludağ, Yusuf
A new method based on using inphase-quadrature (I-Q) ultrasound (US) signals was developed in order to overcome time resolution limitations encountered in turbulent flow measurements by ultrasound Doppler velocimetry (UDV). First, mathematical relations to be used in obtaining probability density function (PDF) and auto correlation function (ACF) of randomly fluctuating velocity (u) in the probe direction were derived in the form of the experimental I-Q signals. The results were evaluated with respect to those obtained by UDV or other conventional techniques whenever possible. In terms of general trend, velocity PDFs obtained from analytical relation along with the I-Q signals and from UDV compare well with each other for Reynolds numbers (N-Re) of 16730 and 26300 at the pipe center. Smaller standard deviation of velocity PDF from spectrum of I-Q US signals than that of UDV measurements was the only major difference that could be attributed to the enhanced time resolution of the former technique. Effect of increased time resolution was also observed in the measurement of velocity auto correlation coefficients (ACC). Time correlations of the velocity fluctuations could be captured by using I-Q signals as opposed to UDV that resulted in correlations going to zero in one or two time steps.
FLOW MEASUREMENT AND INSTRUMENTATION

Suggestions

An Improved Receiver for Harmonic Motion Microwave Doppler Imaging
Soydan, Damla Alptekin; Irgin, Umit; Top, Can Baris; Gençer, Nevzat Güneri (2020-03-01)
© 2020 EurAAP.Harmonic motion microwave Doppler imaging is a novel imaging modality that combines focused ultrasound and radar techniques to obtain data based on mechanical and electrical properties of the tissue. In previous experimental studies, the Doppler component of the scattered signal is sensed and used to create 2D images of a tumor inside a homogeneous fat phantom. Due to the drawbacks of the receiver configuration, scanning time was high, the signal-to-noise ratio was low, and the multi-frequency...
Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms
Baykal, Nazife; Yalabık, N.; Erkmen, Aydan Müşerref (Elsevier BV, 1996-11)
Doppler umbilical artery blood flow velocity waveform measurements are used in perinatal surveillance for the evaluation of fetal condition. There is an ongoing debate on the predictive value of Doppler measurements concerning the critical effect of the selection of parameters for the interpretation of Doppler waveforms. In this paper, we describe how neural network methods can be used both to discover relevant classification features and subsequently to; classify Doppler umbilical artery blood flow velocit...
Harmonic Motion Microwave Doppler Imaging method for breast tumor detection
Top, Can Baris; Tafreshi, Azadeh Kamali; Gençer, Nevzat Güneri (2014-08-30)
Harmonic Motion Microwave Doppler Imaging (HMMDI) method is recently proposed as a non-invasive hybrid breast imaging technique for tumor detection. The acquired data depend on acoustic, elastic and electromagnetic properties of the tissue. The potential of the method is analyzed with simulation studies and phantom experiments. In this paper, the results of these studies are summarized. It is shown that HMMDI method has a potential to detect malignancies inside fibro-glandular tissue.
A NONINVASIVE FOCAL FIELD INTENSITY ESTIMATION METHOD USING FINITE-AMPLITUDE EFFECTS IN ULTRASOUND HYPERTHERMIA
OZYAR, MS; KOYMEN, H (1991-12-11)
A method for noninvasive in situ estimation of intensity in ultrasound hyperthermia is presented. The method employs the nonlinear theory of sound propagation in a focused ultrasound hyperthermia system in order to determine the focal field intensity, where the sound intensity levels are relatively high in the focal volume.
Received Signal in Harmonic Motion Microwave Doppler Imaging as a Function of Tumor Position in a 3D Scheme
IRGIN, Umit; TOP, Can Baris; TAFRESHI, Azadeh Kamali; Gençer, Nevzat Güneri (2017-02-08)
Harmonic Motion Microwave Doppler Imaging method, which was proposed as an alternative method for breast tumor detection, is a combination of microwave radar and focused ultrasound techniques yielding data depending on electrical and mechanical properties of the tissue. In this study, Harmonic Motion Microwave Doppler Imaging data from a small tumor inside homogeneous fat is analyzed as a function of tumor location on three orthogonal planes using Finite Difference Time Domain simulations. The results show ...
Citation Formats
V. KÖSELİ and Y. Uludağ, “Utilization of I-Q signals of ultrasound Doppler velocimeter to obtain 1-D turbulence quantities in pipe flow,” FLOW MEASUREMENT AND INSTRUMENTATION, pp. 25–34, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37233.