Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A hybrid multi object tracker using mean-shift and background subtraction Ortalama kayma ve arka plan çikarimi kullanilarak karma çoklu nesne taki̇pçi̇si̇
Date
2011-07-21
Author
Beyan, Çigdem
Temizel, Alptekin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
80
views
0
downloads
Cite This
Ortalama kayma takibi; nesnelerin takip edilmesinde kullanılan etkin bir yöntemdir. Bu çalışmada; ortalama kayma takibi tabanlı, tamamen otomatik, sabit kamera çoklu nesne takip sistemi önerilmektedir. Nesne takipçilerini ilklendirmek için ön plan tespiti kullanılmıştır. Nesnelerin sınır kutusu maske olarak kullanılarak, nesnenin yeni pozisyonunun bulunması için gerekli yineleme sayısı azaltılmıştır. Takipçiler, nesnenin boyutunun, şeklinin değişmesi, nesnenin bir başka nesne tarafından önünün kapanması, nesnelerin ayrılması ve sahneden ayrılan nesneler kadar sahneye yeni giren nesnelerin de saptanması gibi durumlarda olabilecek problemleri aşmak için güncellenir. Gölge giderimi kullanılarak takip doğruluğu arttırılmış ve olası yanlış pozitiflerin üstesinden gelinmiştir. Sonuç olarak, otomatik video gözetleme uygulamalarında kullanılabilecek, standart ortalama kayma takibinin problemlerini çözen, bu metottan üstün, gerçekleştirilmesi kolay, dayanıklı ve etkin bir takip metodu elde edilmiştir.
URI
https://hdl.handle.net/11511/39759
DOI
https://doi.org/10.1109/siu.2011.5929600
Conference Name
2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU 2011)
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
A tracker-aware detector threshold optimization formulation for tracking maneuvering targets in clutter
Aslan, Murat Samil; Saranlı, Afşar (Elsevier BV, 2011-09-01)
In this paper, we consider a tracker-aware radar detector threshold optimization formulation for tracking maneuvering targets in clutter. The formulation results in an online method with improved transient performance. In our earlier works, the problem was considered in the context of the probabilistic data association filter (PDAF) for non-maneuvering targets. In the present study, we extend the ideas in the PDAF formulation to the multiple model (MM) filtering structures which use PDAFs as modules. Althou...
Extended Target Tracking and Classification Using Neural Networks
Tuncer, Barkın; Kumru, Murat; Özkan, Emre (2019-01-01)
Extended target/object tracking (ETT) problem involves tracking objects which potentially generate multiple measurements at a single sensor scan. State-of-the-art ETT algorithms can efficiently exploit the available information in these measurements such that they can track the dynamic behaviour of objects and learn their shapes simultaneously. Once the shape estimate of an object is formed, it can naturally be utilized by high-level tasks such as classification of the object type. In this work, we propose ...
Extended Object Tracking and Shape Classification
Tuncer, Barkın; Kumru, Murat; Alatan, Abdullah Aydın; Özkan, Emre (2018-07-10)
Recent extended target tracking algorithms provide reliable shape estimates while tracking objects. The estimated extent of the objects can also be used for online classification. In this work, we propose to use a Bayesian classifier to identify different objects based on their contour estimates during tracking. The proposed method uses the uncertainty information provided by the estimation covariance of the tracker.
Extended Target Tracking Using Polynomials With Applications to Road-Map Estimation
Lundquist, Christian; Orguner, Umut; Gustafsson, Fredrik (Institute of Electrical and Electronics Engineers (IEEE), 2011-01-01)
This paper presents an extended target tracking framework which uses polynomials in order to model extended objects in the scene of interest from imagery sensor data. State-space models are proposed for the extended objects which enables the use of Kalman filters in tracking. Different methodologies of designing measurement equations are investigated. A general target tracking algorithm that utilizes a specific data association method for the extended targets is presented. The overall algorithm must always ...
A Plume Tracking Algorithm Based on Crosswind Formations
Lochmatter, Thomas; Aydın Göl, Ebru; Navarro, Inaki; Martinoli, Alcherio (2013-01-01)
We introduce a plume tracking algorithm based on robot formations. The algorithm is inherently designed for multi-robot systems, and requires at least two robots to collaborate. The robots try to keep themselves centered around the plume while moving upwind towards the source, and share their odor concentration and wind direction measurements with each other. In addition, robots know the relative poses of other team members. Systematic experiments with up to 5 real robots in a wind tunnel show that the robo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ç. Beyan and A. Temizel, “A hybrid multi object tracker using mean-shift and background subtraction Ortalama kayma ve arka plan çikarimi kullanilarak karma çoklu nesne taki̇pçi̇si̇,” presented at the 2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU 2011), 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39759.