Design and Applications of Yb/Ga2Se3/C Schottky Barriers

Khanfar, Hazem K.
Qasrawi, Atef F.
Zakarneh, Yasmeen A.
Hasanlı, Nızamı
In this paper, the Ga2Se3 crystals are used to design a Yb/Ga2Se3/C Schottky barrier. The device structure is investigated by the X-ray diffraction technique, which reveals a monoclinic-face-centered cubic interfacing type of structure. The barrier is studied by means of current (I)-voltage (V) characteristics in the dark and under light through photoexcitation from tungsten lamp and from the He-Ne laser. In addition, the impedance spectroscopy of these devices is studied in the frequency range of 10-1400 MHz. The photoexcited I-V curve analysis allowed investigating the biasing voltage, illumination power, and energy effects on the diode physical parameters, which are presented by the rectification ratio, the Schottky barrier height, the ideality factor, the series resistance, the photosensitivity, the responsivity, and the external quantum efficiency (EQE). While a maximum photosensitivity of 42 was observed for laser excitation with a wavelength of 632 nm at a reverse bias of 4.4 V, the EQE reached value of 1652% at 19.0 V. On the other hand, the ac current conduction analysis of the electrical conductivity, which was determined from the impedance spectral analysis, indicated that the ac signal processing through the Yb/Ga2Se3/C samples is due to the correlated hopping conduction through localized states of Fermi density of 3.98 x 10(19) eV(-1) cm(-3). The high-and biasing-dependent EQE% nominates the Yb/Ga2Se3/C as a tunable optoelectronic device.


Growth and characterization of PbMo0.75W0.25O4 single crystal: A promising material for optical applications
Isik, M.; Hasanlı, Nızamı; Darvishov, N.H.; Bagiev, V.E. (2023-02-15)
The present paper reports the structural and optical properties of PbMo0.75W0.25O4 single crystals grown by Czochralski method. XRD pattern of the crystal indicated well-defined two diffraction peaks associated with tetragonal crystalline structure. Raman and infrared spectra of the grown single crystals were presented to get information about the vibrational characteristics. Observed Raman modes were associated with modes of PbMoO4 and PbWO4. Eight bands were revealed in the infrared spectrum. The bands ob...
Design, Modelling and Analysis of Morphing Airfoils
Köksal, Buğra; Şahin, Melin; Uzol, Oğuz; Department of Aerospace Engineering (2023-1)
This study presents the design, finite element (FE) modeling and analysis of a morphing airfoil using pressure-actuated cell structures. It is aimed that the selected baseline airfoil should be capable of changing its profile to morph into a target airfoil profile. To achieve this goal, first, a NACA 0012 airfoil with a 500 mm chord and 8 mm x 8 mm outer cross-section is obtained in Altair® HyperWorks environment as a baseline airfoil. Following this, the cell actuators responsible for morphing are designed...
Modeling of Magnetic Properties of Nanocrystalline La-doped Barium Hexaferrite
KÜÇÜK, İLKER; Sozeri, Huseyin; Ozkan, Husnu (Springer Science and Business Media LLC, 2011-05-01)
In this paper an artificial neural network (ANN) has been developed to compute the magnetization of the pure and La-doped barium ferrite powders synthesized in ammonium nitrate melt. The input parameters were: the Fe/Ba ratio, La content, sintering temperature, HCl washing and applied magnetic field. A total of 8284 input data set from currently measured 35 different samples with different Fe/Ba ratios, La contents and washed or not washed in HCl were available. These data were used in the training set for ...
Design and optimization of nanooptical couplers based on photonic crystals involving dielectric rods of varying lengths
Yazar, Şirin; Ergül, Özgür Salih (2022-1-01)
This study presents design and optimization of compact and efficient nanooptical couplers involving photonic crystals. Nanooptical couplers that have single and double input ports are designed to obtain efficient transmission of electromagnetic waves in desired directions. In addition, these nanooptical couplers are cascaded by adding one after another to realize electromagnetic transmission systems. In the design and optimization of all these nanooptical couplers, the multilevel fast multipole algorithm, w...
Computational modeling of isothermal decay curves of trapping centers in TlGaSeS layered single crystals
Kucuk, Ilker; Yildirim, Tacettin; Hasanlı, Nızamı; Ozkan, Husnu (Elsevier BV, 2010-10-08)
This paper presents a new approach based on multilayered perceptrons (MLPs) to compute the isothermal decay curves of trapping centers in undoped TlGaSeS layered crystals. The MLP has been trained by a Genetic Algorithm (GA). The results obtained using the MLP model were tested with an untrained experimental data. The comparison has shown that the proposed model can predict more accurately and easily the isothermal decay curves.
Citation Formats
H. K. Khanfar, A. F. Qasrawi, Y. A. Zakarneh, and N. Hasanlı, “Design and Applications of Yb/Ga2Se3/C Schottky Barriers,” IEEE SENSORS JOURNAL, pp. 4429–4434, 2017, Accessed: 00, 2020. [Online]. Available: