1 fm/root Hz noise level low temperature Fabry-Perot atomic force/magnetic force microscope operating in 4-300 K temperature range

2020-01-01
Karc, Ozgur
Celik, Umit
Oral, Ahmet
In this publication, we describe the design of a new fiber Fabry-Perot interferometer and employ this to a low temperature atomic force/magnetic force microscope (LT-AFM/MFM) operating in the 4-300 K temperature range. A multilayer dielectric mirror coated optical fiber is used to achieve unprecedented 1 fmnoise level, while the shot noise limit is 0.51 fm. The cavity length is adjustable, and the fiber can be brought within a very close proximity of the cantilever using a dedicated 2 mm stroke piezonanopositioner integrated on the piezotube scanner. The same nanopositioner also is used to park the fiber at a safe parking location during cantilever exchange. We demonstrate the performance of the LT-AFM/MFM by imaging the ITO thin film at 300 K, atomic steps on HOPG at 300 K, magnetic bits on the hard disk at 15 K, and the Abrikosov vortex lattice in the BSCCO(2122) single crystal at 4 K. Published under license by AIP Publishing.
REVIEW OF SCIENTIFIC INSTRUMENTS

Suggestions

A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids
PATİL, S; MATEİ, G; DONG, H; HOFFMANN, PM; Karakose, M; Oral, Ahmet (AIP Publishing, 2005-10-01)
We describe a highly improved atomic force microscope for quantitative nanomechanical measurements in liquids. The main feature of this microscope is a modified fiber interferometer mounted on a five axis inertial slider which provides a deflection sensitivity that is significantly better than conventional laser deflection based systems. The measured low noise floor of 572.0 fm/root Hz provides excellent cantilever amplitude resolution. This allows us to operate the instrument far below resonance at extreme...
Ultrafast spectroscopy diagnostic to measure localized ion temperature and toroidal velocity fluctuations
Uzun Kaymak, İlker Ümit; McKee, G. R.; Schoenbeck, N.; Smith, D.; Winz, G.; Yan, Z. (AIP Publishing, 2010-10-01)
A dual-channel high-efficiency, high-throughput custom spectroscopic system has been designed and implemented at DIII-D to measure localized ion thermal fluctuations associated with drift wave turbulence. A large-area prism-coupled transmission grating and high-throughput collection optics are employed to observe C VI emission centered near lambda = 529 nm. The diagnostic achieves 0.25 nm resolution over a 2.0 nm spectral band via eight discrete spectral channels. A turbulence-relevant time resolution of 1 ...
Overview of the beam emission spectroscopy diagnostic system on the National Spherical Torus Experiment
Smith, D. R.; Feder, H.; Feder, R.; Fonck, R. J.; Labik, G.; McKee, G. R.; Schoenbeck, N.; Stratton, B. C.; Uzun Kaymak, İlker Ümit; Winz, G. (AIP Publishing, 2010-10-01)
A beam emission spectroscopy (BES) system has been installed on the National Spherical Torus Experiment (NSTX) to study ion gyroscale fluctuations. The BES system measures D-alpha emission from a deuterium neutral heating beam. The system includes two optical views centered at r/a approximate to 0.45 and 0.85 and aligned to magnetic field pitch angles at the neutral beam. f/1.5 collection optics produce 2-3 cm spot sizes at the neutral beam. The initial channel layout includes radial arrays, poloidal arrays...
Wide-field turbulence imaging with beam emission spectroscopy
McKee, G. R.; Fonck, R. J.; Shafer, M. W.; Uzun Kaymak, İlker Ümit; Yan, Z. (AIP Publishing, 2010-10-01)
Imaging of the size, shape, time-averaged, and time-resolved dynamics of long-wavelength density turbulence structures is accomplished with an expanded, high-sensitivity, wide-field beam emission spectroscopy (BES) diagnostic on DIII-D. A 64-channel BES system is configured with an 8 X 8 grid of discrete channels that image an approximately 7 X 9 cm region at the outboard midplane. The grid covers multiple correlation lengths and each channel shape matches the measured radial-poloidal correlation length asy...
A new method to measure viscosity and intrinsic sound velocity of liquids using impedance tube principles at sonic frequencies
Mert, Behiç; Campanella, OH (AIP Publishing, 2004-08-01)
The attenuation of the sound energy produced by a liquid contained in a cylindrical tube (wave guide) depends on the liquid's viscosity, sound frequency, tube wall thickness, and tube material. By measuring the acoustic impedance of plane sound waves in a cylindrical wave guide, one can obtain the liquid's viscosity. Impedance measurements can also provide sound velocity in the liquid medium as another important physical characteristic. In this study a method using the impedance tube technique is presented....
Citation Formats
O. Karc, U. Celik, and A. Oral, “1 fm/root Hz noise level low temperature Fabry-Perot atomic force/magnetic force microscope operating in 4-300 K temperature range,” REVIEW OF SCIENTIFIC INSTRUMENTS, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47889.