On stable torsion length of a Dehn twist

In this note we prove that the stable torsion length of a Dehn twist is positive. This, in particular, answers a question of T. E. Brendle and B. Farb in the negative. We also give upper bounds for this length.


On the existence of kappa-existentially closed groups
Kegel, Otto H.; Kaya, Burak; Kuzucuoğlu, Mahmut (2018-09-01)
We prove that a κ-existentially closed group of cardinality λ exists whenever κ ≤ λ are uncountable cardinals with λ^{<κ} = λ. In particular, we show that there exists a κ-existentially closed group of cardinalityκ for regular κ with 2^{<κ} = κ. Moreover, we prove that there exists noκ-existentially closed group of cardinality κ for singular κ. Assuming thegeneralized continuum hypothesis, we completely determine the cardinalsκ ≤ λ for which a κ-existentially closed group of cardinality λ exists
Generating the twist subgroup by involutions
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2020-01-01)
For a nonorientable surface, the twist subgroup is an index 2 subgroup of the mapping class group generated by Dehn twists about two-sided simple closed curves. In this paper, we consider involution generators of the twist subgroup and give generating sets of involutions with smaller number of generators than the ones known in the literature using new techniques for finding involution generators.
On the generating graphs of the symmetric and alternating groups
Erdem, Fuat; Ercan, Gülin; Maróti, Attila; Department of Mathematics (2018)
Dixon showed that the probability that a random pair of elements in the symmetric group $S_n$ generates $S_n$ or the alternating group $A_n$ tends to $1$ as $n to infty$. (A generalization of this result was given by Babai and Hayes.) The generating graph $Gamma(G)$ of a finite group $G$ is defined to be the simple graph on the set of non-identity elements of $G$ with the property that two elements are connected by and edge if and only if they generate $G$. The purpose of this thesis is to study the graphs ...
Baykur, R. Inanc; Korkmaz, Mustafa; Monden, Naoyuki (2013-11-01)
We investigate the possible self-intersection numbers for sections of surface bundles and Lefschetz fibrations over surfaces. When the fiber genus g and the base genus h are positive, we prove that the adjunction bound 2h-2 is the only universal bound on the self-intersection number of a section of any such genus g bundle and fibration. As a side result, in the mapping class group of a surface with boundary, we calculate the precise value of the commutator lengths of all powers of a Dehn twist about a bound...
Korkmaz, Mustafa (2012-01-01)
We study the ideal triangulation graph T(S) of an oriented punctured surface S of finite type. We show that if S is not the sphere with at most three punctures or the torus with one puncture, then the natural map from the extended mapping class group of S into the simplicial automorphism group of T(S) is an isomorphism. We also show that, the graph T(S) of such a surface S. equipped with its natural simplicial metric is not Gromov hyperbolic. We also show that if the triangulation graph of two oriented punc...
Citation Formats
M. Korkmaz, “On stable torsion length of a Dehn twist,” MATHEMATICAL RESEARCH LETTERS, pp. 335–339, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54199.