Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
The MACS project: An approach to affordance-inspired robot control
Date
2006-06-09
Author
Rome, Erich
Paletta, Lucas
Şahin, Erol
Dorffner, Georg
Hertzberg, Joachim
Breithaupt, Ralph
Fritz, Gerald
Irran, Joerg
Kintzler, Florian
Loerken, Christopher
May, Stefan
Ugur, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
In this position paper, we present an outline of the MACS approach to affordance-inspired robot control. An affordance, a concept from Ecological Psychology, denotes a specific relationship between an animal and its environment. Perceiving an affordance means perceiving an interaction possibility that is specific for the animal's perception and action capabilities. Perceiving an affordance does not include appearance-based object recognition, but rather feature-based perception of object functions. The central hypothesis of MACS is that an affordance-inspired control architecture enables a robot to perceive more interaction possibilities than a traditional architecture that relies on appearance-based object recognition alone. We describe how the concept of affordances can be exploited for controlling a mobile robot with manipulation capabilities. Particularly, we will describe how affordance support can be built into robot perception, how learning mechanisms can generate affordance-like relations, how this affordance-related information is represented, and how it can be used by a planner for realizing goal-directed robot behavior. We present both the MACS demonstrator and simulator, and summarize development and experiments that have been performed so far. By interfacing perception and goal-directed action in terms of affordances, we will provide a new way for reasoning and learning to connect with reactive robot control. We will show the potential of this new methodology by going beyond navigation-like tasks towards goal-directed autonomous manipulation in our project demonstrators.
Subject Keywords
Scaled information
,
Recognition
,
Traversability
,
Systems
,
Walking
URI
https://hdl.handle.net/11511/54706
Collections
Department of Computer Engineering, Conference / Seminar