Forecasting of ionospheric critical frequency using neural networks

1997-06-15
Altinay, O
Tulunay, E
Tulunay, Yurdanur
Multilayer perceptron type neural networks (NN) are employed for forecasting ionospheric critical frequency (foF2) one hour in advance. The nonlinear black-box modeling approach in system identification is used. The main contributions: 1. A flexible and easily accessible training database capable of handling extensive physical data is prepared, 2. Novel NN design and experimentation software is developed, 3. A training strategy is adopted in order to significantly enhance the generalization or extrapolation ability of NNs, 4. A method is developed for determining the relative significances (RS) of NN inputs in terms of mapping capability.
GEOPHYSICAL RESEARCH LETTERS

Suggestions

Prediction of slip in cable-drum systems using structured neural networks
KILIÇ, Ergin; Dölen, Melik (SAGE Publications, 2014-02-01)
This study focuses on the slip prediction in a cable-drum system using artificial neural networks for the prospect of developing linear motion sensing scheme for such mechanisms. Both feed-forward and recurrent-type artificial neural network architectures are considered to capture the slip dynamics of cable-drum mechanisms. In the article, the network development is presented in a progressive (step-by-step) fashion for the purpose of not only making the design process transparent to the readers but also hig...
Experimental Analysis and FPGA Implementation of the Real Valued Time Delay Neural Network Based Digital Predistortion
Yesil, Soner; Sen, Cansu; Yılmaz, Ali Özgür (2019-01-01)
This paper presents an FPGA implementation of the Real Valued Time Delay Neural Network (RVTDNN) based digital predistortion with a very low resource utilization and high throughput. The implementation exploits efficient utilization of FPGA primitives and approximation of activation functions that can be realized with simple logic operations. The proposed modifications and constraints on the algorithms have been decided and verified based on a closed-loop adaptive hardware setup including RFHIC RWP03040-1H ...
Neural network based online estimation of maneuvering steady states and control limits
Gürsoy, Gönenç; Yavrucuk, İlkay; Department of Aerospace Engineering (2010)
This thesis concerns the design and development of neural network based predictive algorithms to predict approaching aircraft limits. Therefore, approximate dynamics of flight envelope parameters such as angle of attack and load factor are constructed using neural network augmented dynamic models. Then, constructed models are used to predict steady state responses. By inverting the models and solving for critical controls at the known envelope limits, critical control inputs are calculated as well. The perf...
Measurement correction of a set of analog sun sensors via neural network
Sozen, Semsettin Numan; Gokce, Murat; Yavuzyilmaz, Cagatay; Gulmammadov, Farid; Söken, Halil Ersin (2021-06-23)
A Neural Network (NN) based method to improve the accuracy of a set of analog Sun sensors is presented. Analog Sun Sensors are commonly used on satellites due to their reduced cost, small size and low power consumption. However, especially in Earth imaging satellites, they are prone to the Earth albedo effects. Magnitude and direction of albedo change depending on the reflection characteristics of the Earth's surface, position and attitude of the satellite and position of the Sun. The albedo may deteriorate...
Neural network based beamforming for linear and cylindrical array applications
Güreken, Murat; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2009)
In this thesis, a Neural Network (NN) based beamforming algorithm is proposed for real time target tracking problem. The algorithm is performed for two applications, linear and cylindrical arrays. The linear array application is implemented with equispaced omnidirectional sources. The influence of the number of antenna elements and the angular seperation between the incoming signals on the performance of the beamformer in the linear array beamformer is studied, and it is observed that the algorithm improves...
Citation Formats
O. Altinay, E. Tulunay, and Y. Tulunay, “Forecasting of ionospheric critical frequency using neural networks,” GEOPHYSICAL RESEARCH LETTERS, pp. 1467–1470, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56801.