Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
GLUING AND HILBERT FUNCTIONS OF MONOMIAL CURVES
Date
2009-01-01
Author
Arslan, Feza
METE, PINAR
Sahin, Mesut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
26
views
0
downloads
Cite This
In this article, by using the technique of gluing semigroups, we give infinitely many families of 1-dimensional local rings with non-decreasing Hilbert functions. More significantly, these are local rings whose associated graded rings are not necessarily Cohen-Macaulay. In this sense, we give an effective technique for constructing large families of 1-dimensional Gorenstein local rings associated to monomial curves, which support Rossi's conjecture saying that every Gorenstein local ring has a non-decreasing Hilbert function.
Subject Keywords
Rossi's conjecture
,
Nice gluing
,
Semigroup gluing
,
Numerical semigroup
,
Monomial curve
,
Tangent cone
,
Hilbert function of local ring
URI
https://hdl.handle.net/11511/66317
Journal
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Monomial curve families supporting Rossi's conjecture
Arslan, Feza; Sipahi, Neslihan; Sahin, Nil (Elsevier BV, 2013-08-01)
In this article, we give a constructive method to form infinitely many families of monomial curves in affine 4-space with corresponding Gorenstein local rings in embedding dimension 4 supporting Rossi's conjecture. Starting with any monomial curve in affine 2-space, we obtain large families of Gorenstein local rings with embedding dimension 4, having non-decreasing Hilbert functions, although their associated graded rings are not Cohen-Macaulay.
Asymptotic Behavior of Lotz-Rabiger and Martingale Nets
Emelyanov, Eduard (2010-09-01)
Using Theorem 1 (of convergence) in [1], we prove several results on LR- and M-nets by a unified approach to these nets that appear as the two extreme types of asymptotically abelian nets.
Affine Equivalency and Nonlinearity Preserving Bijective Mappings over F-2
Sertkaya, Isa; Doğanaksoy, Ali; Uzunkol, Osmanbey; Kiraz, Mehmet Sabir (2014-09-28)
We first give a proof of an isomorphism between the group of affine equivalent maps and the automorphism group of Sylvester Hadamard matrices. Secondly, we prove the existence of new nonlinearity preserving bijective mappings without explicit construction. Continuing the study of the group of nonlinearity preserving bijective mappings acting on n-variable Boolean functions, we further give the exact number of those mappings for n <= 6. Moreover, we observe that it is more beneficial to study the automorphis...
Symplectic and multi-symplectic methods for coupled nonlinear Schrodinger equations with periodic solutions
Aydin, A.; Karasoezen, B. (Elsevier BV, 2007-10-01)
We consider for the integration of coupled nonlinear Schrodinger equations with periodic plane wave solutions a splitting method from the class of symplectic integrators and the multi-symplectic six-point scheme which is equivalent to the Preissman scheme. The numerical experiments show that both methods preserve very well the mass, energy and momentum in long-time evolution. The local errors in the energy are computed according to the discretizations in time and space for both methods. Due to its local nat...
An improvement on the bounds of Weil exponential sums over Gallois rings with some applications
Ling, S; Özbudak, Ferruh (Institute of Electrical and Electronics Engineers (IEEE), 2004-10-01)
We present an upper bound for Weil-type exponential sums over Galois rings of characteristic p(2) which improves on the analog of the Weil-Carlitz-Uchiyama bound for Galois rings obtained by Kumar, Helleseth, and Calderbank. A more refined bound, expressed in terms of genera of function fields, and an analog of McEliece's theorem on the divisibility of the homogeneous weights of codewords in trace codes over Z(p)2, are also derived. These results lead to an improvement on the estimation of the minimum dista...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Arslan, P. METE, and M. Sahin, “GLUING AND HILBERT FUNCTIONS OF MONOMIAL CURVES,”
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
, pp. 2225–2232, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66317.