Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Burgers Model on Reisnerr-Nordstrom Spacetime by Finite Volume Approximations
Date
2018-06-16
Author
Okutmuştur, Baver
Metadata
Show full item record
Item Usage Stats
156
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/76156
Collections
Unverified, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of Second Order Time Filtered Backward Euler Method for MHD Equations
Cibik, Aytekin; EROĞLU, FATMA GÜLER; Kaya Merdan, Songül (Springer Science and Business Media LLC, 2020-02-01)
he present work is devoted to introduce the backward Euler based modular time filter method for MHD flow. The proposed method improves the accuracy of the solution without a significant change in the complexity of the system. Since time filters for fluid variables are added as separate post processing steps, the method can be easily incorporated into an existing backward Euler code. We show that the time filtered backward Euler method delivers better correct energy and cross-helicity balance in comparison w...
Analysis of electromagnetic scattering problems with the finite element method
Yılmaz, A. Egemen; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2000)
Analysis of hypersonic flow using three dimensional Navier-Stokes equations
Özgün, Muharrem; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton’s method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Especially, temperature...
Analysis of hypersonic flow using three dimensional navier-stokes equations
Özgün, Muharrem; Eyi, Sinan; Department of Aerospace Engineering (2016)
Metallic materials in aerospace structures are exposed to impact type loads depending on their usage area. High strain rate material characterization of metallic materials is very crucial to properly prepare finite element models to be used in impact loading situations. Johnson-Cook material model is a suitable material model to represent the behaviour of metallic materials at high strain rates. In the present thesis study, parameters of the Johnson-Cook material model for Al 7075-T651 are determined utiliz...
Analysis of RC walls with a mixed formulation frame finite element
Sarıtaş, Afşin (2013-10-01)
This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Okutmuştur, “Analysis of Burgers Model on Reisnerr-Nordstrom Spacetime by Finite Volume Approximations,” 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/76156.