Structural, electronic, elastic, thermodynamic and vibration properties of TbN compound from first principles calculations

2012-03-01
ÇİFTCİ, YASEMİN
Ozayman, M.
Sürücü, Gökhan
Colakoglu, K.
Deligoz, E.
We have predicted structural, electronic, elastic, thermodynamic and vibration characteristics of TbN, using density functional theory within generalized-gradient (GGA) apraximation. For the total energy calculation we have used the projected augmented plane-wave (PAW) implementation of the Vienna Ab initio Simulation Package (VASP). We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), Tetragonal (L1(0)), WC (Bh), NiAs (B8), PbO (B10) and Wurtzite (B4). We have performed the thermodynamics properties for TbN by using quasi-harmonic Debye model. We have, also, predicted the temperature and pressure variation of the volume, bulk modulus, thermal expansion coefficient, heat capacities and Debye temperatures in a wide pressure (0-130 GPa) and temperature ranges (0-2000 K). Furthermore, the band structure, phonon dispersion curves and corresponding density of states are computed. Our results are compared to other theoretical and experimental works, and excellent agreement is obtained. (C) 2012 Elsevier Masson SAS. All rights reserved.

Suggestions

Structural and electronic properties of InmSen microclusters: density functional theory calculations
Erkoc, S; Katırcıoğlu, Şenay; Yilmaz, T (2001-06-15)
We have investigated the structural and electronic properties of isolated InmSen microclusters for m + n less than or equal to 4 by performing density functional theory calculations. We have obtained the optimum geometries, possible dissociation channels and the electronic structure of the clusters considered.
Structural and electronic properties of defected carbon nanocapsules
Pekoez, Rengin; Erkoç, Şakir (2007-06-01)
Structural and electronic properties of defected carbon nanocapsule systems have been investigated theoretically by performing semi-empirical molecular orbital and density functional theory methods. Geometries of the structures have been optimized by applying PM3 level of calculations within restricted Hartree Fock formalism and electronic information have been obtained by applying B3LYP level of density functional theory calculation using 3-21G basis set. The studied systems include (5,5) and (9,0) single-...
Structural and electronic properties of GaP nanowires
Mohammad, Rezek; Katırcıoğlu, Şenay (2015-09-01)
Structural stability and electronic properties of bare and hydrogenated GaP nanowires in zinc-blende and wurtzite phases have been investigated using first-principles calculations based on density functional theory. It is determined that relaxation of the hydrogenated GaP nanowires is very small compared to that of their bare ones. The wurtzite structural hydrogenated GaP nanowires are found more stable than the zinc-blende structural ones by cohesive energy calculations. It is obtained that all the bare an...
Structural, electronic and magnetic properties of various nanosystems : molecular dynamics simulations and density functional theory calculations
Sholejh, Alaei; Erkoç, Şakir; Jalili, Seifollah; Department of Physics (2014)
In this study, we aim to investigate the structural, magnetic and electronic properties of various nanosystems using molecular dynamics simulation technique and density functional theory calculations. In the first part, iron oxide nanostructures (nanorods, clusters and nanoparticles) were considered. We applied strain, at different temperatures, on nanorods in order to study stability of iron oxide nanorods using molecular dynamics simulation. Furthermore, radial distribution functions of iron oxide nanopar...
Structural and Thermal Properties of Indium Phosphide Nanoparticles: Molecular Dynamics Simulations
Nayir, Nadire; Tasci, Emre S.; Erkoç, Şakir (2015-09-01)
Structural and thermal properties of Indium Phosphide spherical nanoparticles at various sizes have been investigated via classical molecular dynamics simulations using an atomistic potential energy function. The initial configurations of the nanoparticles were chosen as spheres generated from the zinc blende crystalline structure. To investigate the relation between the size and the heat capacity, the simulations were realized at temperatures in the range of 1-1300 K under both equilibrium and non-equilibr...
Citation Formats
Y. ÇİFTCİ, M. Ozayman, G. Sürücü, K. Colakoglu, and E. Deligoz, “Structural, electronic, elastic, thermodynamic and vibration properties of TbN compound from first principles calculations,” SOLID STATE SCIENCES, pp. 401–408, 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88984.