Distinguishing polymeric insulators PD sources through RF PD measurement

Download
2020-11-01
Abedini-Livari, Ali
Anşin, Berfin
Vakilian, Mehdi
A better performance and consequently the widespread use of polymeric insulators in different parts of the power grid can increase their role in the grid reliability. The accumulation of contamination and housing-erosion are the two most effective factors in undermining the performance of this type of insulators. Therefore, electric utilities need to identify contaminated insulators for washing and cracks in polymeric housing to replace them with healthy specimens. This paper discusses the impact of contamination layer and housing-erosion of polymeric insulators on the partial discharges (PD) at the insulator surface, through RF-PRPD (phase resolved partial discharge) patterns. The existence of different sources of PDs in a real environment (transmission line or station) makes it difficult to use the PRPD patterns to distinguish them from each other. Therefore, using a conical monopole antenna, the simultaneous PD signals and the related RF-PRPD pattern of samples under test are captured. The grayscale image was obtained using the time-frequency matrix of the PD signals transform, by wavelet. Then, features are extracted and selected from grayscale image. By clustering of the PD signals, the resulted RF-PRPD sub-patterns are well separated and provided the necessary means to distinguish among the status of different samples under test.
IET GENERATION TRANSMISSION & DISTRIBUTION

Suggestions

Plug-in electric vehicle load modeling for charging scheduling strategies in microgrids
Güzel, Saliha İven; Göl, Murat (2022-12-01)
Utilization of plug-in electric vehicle (PEV) load models can improve the performance of smart charging strategies, which increase the reliability of the grid by harnessing the flexibility of PEV loads. This paper presents a method for utilizing personal PEV load models in real-time stochastic charging control with single and finite system-time horizons. First, the drivers' load models are found with Kernel Density Estimation (KDE). Second, a single system-time horizon coordinated charging control algorithm...
CHARACTERIZATION OF LATENT THERMAL ENERGY IN A STORAGE UNIT WITH FIBONACCI-SEQUENCE-INSPIRED FINS
Baghaei Oskouei, Seyedmohsen; Bayer, Özgür; Department of Mechanical Engineering (2023-1-19)
Latent thermal energy storage (LTES) is a viable method to mitigate one of the main problems with renewable energy sources, such as solar energy, which is their intermittent nature. LTES units take advantage of the large latent heat of fusion in phase change materials (PCMs) to store a substantial amount of energy in a relatively small volume, making them efficient and economical. The major challenge with PCMs is their low thermal conductivity, eventuating long melting (charging) and solidification (dischar...
Plug-in Electric Vehicle Load Modeling for Smart Charging Strategies in Microgrids
Güzel, Saliha İven; Göl, Murat (2021-01-01)
The widespread adoption of plug-in electric vehicles (PEVs) is a path to be taken towards a green energy future, yet the uncoordinated penetration of PEVs prompts overloadings and low voltage violations that the existing power grid is not capable of managing. This issue can be addressed by utilizing PEV load models in component selection and smart charging strategies. PEV load modeling researches focus on the aggregator's and system operator's perspectives, and consideration of individual PEV loads in charg...
Novel metal assisted etching technique for enhanced light management in black crystalline SI solar cells /
Es, Fırat; Turan, Raşit; Department of Chemistry (2015)
Photovoltaic (PV) technology needs higher performance - lower cost materials and structures in order to catch the grid parity and become an everyday use power source. The most commonly used material in PV, crystalline silicon, suffers from low absorption due to its indirect band gap nature. In order to overcome this problem, several light trapping structures have been used that increase the path length of photons inside the absorbing body of the device. However, conventional light trapping schemes cannot be...
Fabrication of Si nanocrystals in an amorphous SiC matrix by magnetron sputtering
Gencer Imer, A.; Yıldız, İlker; Turan, Raşit (Elsevier BV, 2010-7)
Si nanocrystals embedded in a wide bandgap material have been of interest for various electronic devices, including third-generation solar cells with efficiency values exceeding theoretical limits. In this work, Si-rich amorphous SiC layers with different Si contents were fabricated by the RF magnetron sputtering deposition technique. Si nanocrystal formation was induced by a high-temperature annealing process in a series of samples with different Si contents controlled by the DC power applied to the Si tar...
Citation Formats
A. Abedini-Livari, B. Anşin, and M. Vakilian, “Distinguishing polymeric insulators PD sources through RF PD measurement,” IET GENERATION TRANSMISSION & DISTRIBUTION, vol. 14, no. 21, pp. 4859–4865, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92060.