Infrared Target Detection using Shallow CNNs

Uzun, Engin
Aksoy, Tolga
Akagündüz, Erdem
Convolutional Neural Networks can solve the target detection problem satisfactorily. However, the proposed solutions generally require deep networks and hence, are inefficient when it comes to utilising them on performance-limited systems. In this paper, we study the infrared target detection problem using a shallow network solution, accordingly its implementation on a performance limited system. Using a dataset comprising real and simulated infrared scenes; it is observed that, when trained with the correct training strategy, shallow networks can provide satisfactory performance, even with scale-invariance capability.
28th Signal Processing and Communications Applications Conference (SIU)


Electromagnetic Target Classification using time frequency analysis and neural networks
Sayan, Gönül; Leblebicioğlu, Mehmet Kemal (Wiley, 1999-04-01)
This paper demonstrates the feasibility and advantages of using a self-organizing map (SOM)-type neural network classifier for electromagnetic target recognition. The classifier is supported by a novel feature extraction unit in which the Wigner distribution (WD), a time-frequency representation, is utilized for the extraction of natural-resonance-related energy feature vectors from scattered fields. The proposed target classification technique is tested for a set of canonical targets, displaying an excelle...
Domain-Structured Chaos in a Hopfield Neural Network
Akhmet, Marat (World Scientific Pub Co Pte Lt, 2019-12-30)
In this paper, we provide a new method for constructing chaotic Hopfield neural networks. Our approach is based on structuring the domain to form a special set through the discrete evolution of the network state variables. In the chaotic regime, the formed set is invariant under the system governing the dynamics of the neural network. The approach can be viewed as an extension of the unimodality technique for one-dimensional map, thereby generating chaos from higher-dimensional systems. We show that the dis...
Neural Network Based Beamforming Using a Cylindrical Patch Array
Gureken, Murat; Dural Ünver, Mevlüde Gülbin; Caylar, Selcuk (2009-06-05)
A neural network algorithm is implemented for beamforming problem. The cylindrical array with M directive MPA elements has a full coverage of 360deg. Considering the total angular coverage of 360deg in terms of 12 sectors of 30deg each and activating only some MPA elements in the related sector reduces the training set and increases the performance of the beamformer. Increasing the number of targets in different sectors has no effect on the performance of the beamformer.
GMDH-type neural network algorithms for short term forecasting
Dağ, Osman; Yozgatlıgil, Ceylan; Department of Statistics (2015)
Group Method of Data Handling (GMDH) - type neural network algorithms are the heuristic self-organization method for modelling the complex systems. GMDH algorithms are utilized for the variety of purposes, which are identification of physical laws, extrapolation of physical fields, pattern recognition, clustering, approximation of multidimensional processes, forecasting without models and so on. In this study, GMDH - type neural network algorithms were applied to make forecasts for time series data sets. We...
Neural network based beamforming for linear and cylindrical array applications
Güreken, Murat; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2009)
In this thesis, a Neural Network (NN) based beamforming algorithm is proposed for real time target tracking problem. The algorithm is performed for two applications, linear and cylindrical arrays. The linear array application is implemented with equispaced omnidirectional sources. The influence of the number of antenna elements and the angular seperation between the incoming signals on the performance of the beamformer in the linear array beamformer is studied, and it is observed that the algorithm improves...
Citation Formats
E. Uzun, T. Aksoy, and E. Akagündüz, “Infrared Target Detection using Shallow CNNs,” presented at the 28th Signal Processing and Communications Applications Conference (SIU), ELECTR NETWORK, 2020, Accessed: 00, 2021. [Online]. Available: