A Neurofuzzy network model for rule-based systems

Download
1997
Bilen, Esin

Suggestions

A temporal neurofuzzy model for rule-based systems
Alpaslan, Ferda Nur; Jain, L (1997-05-23)
This paper reports the development of a temporal neuro-fuzzy model using fuzzy reasoning which is capable of representing the temporal information. The system is implemented as a feedforward multilayer neural network. The learning algorithm is a modification of the backpropagation algorithm. The system is aimed to be used in medical diagnosis systems.
A pattern classification approach for boosting with genetic algorithms
Yalabık, Ismet; Yarman Vural, Fatoş Tunay; Üçoluk, Göktürk; Şehitoğlu, Onur Tolga (2007-11-09)
Ensemble learning is a multiple-classifier machine learning approach which produces collections and ensembles statistical classifiers to build up more accurate classifier than the individual classifiers. Bagging, boosting and voting methods are the basic examples of ensemble learning. In this study, a novel boosting technique targeting to solve partial problems of AdaBoost, a well-known boosting algorithm, is proposed. The proposed system finds an elegant way of boosting a bunch of classifiers successively ...
A context aware model for autonomous agent stochastic planning
Ekmekci, Ömer; Polat, Faruk (Elsevier BV, 2019-02-01)
Markov Decision Processes (MDPs) are not able to make use of domain information effectively due to their representational limitations. The lacking of elements which enable the models be aware of context, leads to unstructured representation of that problem such as raw probability matrices or lists. This causes these tools significantly less efficient at determining a useful policy as the state space of a task grows, which is the case for more realistic problems having localized dependencies between states a...
A macroscopic model for self-organized aggregation in swarm robotic systems
Soysal, Onur; Şahin, Erol (2006-10-01)
We study the self-organized aggregation of a swarm of robots in a closed arena. We assume that the perceptual range of the robots are smaller than the size of the arena and the robots do not have information on the size of the swarm or the arena. Using a probabilistic aggregation behavior model inspired from studies of social insects, we propose a macroscopic model for predicting the final distribution of aggregates in terms of the parameters of the aggregation behavior, the arena size and the sensing chara...
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
Citation Formats
E. Bilen, “A Neurofuzzy network model for rule-based systems,” Middle East Technical University, 1997.