The rise velocity of an air bubble in coarse porous media : theoretical studies

2004
Cihan, Abdullah
The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/sec. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

Suggestions

Rise velocity of an air bubble in porous media: Theoretical studies
Corapcioglu, MY; Cihan, A; Drazenovic, M (American Geophysical Union (AGU), 2004-04-29)
[1] The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble ri...
Effect of dispersed phase feed time on the droplet size of Pickering emulsions produced in a stirred tank
Donmez, Dila; Ayrancı Tansık, İnci (Wiley, 2020-06-01)
The aim of this study was to investigate the effect of feed time of the oil phase on the average droplet size of Pickering emulsions produced in stirred tanks. Three types of impellers were tested: RT, up-pumping PBT (PBTU), and down-pumping PBT (PBTD). All the impellers were tested at two sizes, T/3 and T/2. All configurations were compared at constant tip speed, power per mass, and impeller Reynolds number. The droplet diameters were measured in Mastersizer (R) 3,000 (Malvern). The results showed that an ...
Effects of periodic flow fluctuations on magnetic resonance flow images
Uludağ, Yusuf; McCarthy, MJ (Wiley, 2004-08-01)
The effects of periodic velocity fluctuations on magnetic resonance flow images are investigated experimentally and theoretically. In the experiments, laminar pipe flow of water was examined. The flow was driven by a constant pressure head with a superimposed sinusoidal component with the frequency m, varied from 0 to 1 Hz, whereas in the simulations omega(z) was between 0 to 65 Hz. The velocity profiles obtained from the experimental results compare well with the theoretical calculations. Both theory and e...
The biodegradation of benzene, toluene and phenol in a two-phase system
Hamed, TA; Bayraktar, E; Mehmetoglu, U; Mehmetoglu, T (Elsevier BV, 2004-07-15)
A two-phase aqueous-organic system was used to degrade benzene, toluene and phenol, individually and as mixture by Pseudomonas putida F1 (ATCC 700007). In the first stage of the work, the effect of the phase ratio (0-1, v/v) and the agitation rate (150 and 200 rpm) on the biodegradation process was investigated in an orbital shaker using 2-undecanone as the solvent and the most suitable phase ratio and agitation rate were found to be 0.0625 (v/v) and 200 rpm, respectively. P. putida F1 was added into the aq...
Investigation of sodium and potassium ions in relation to bioflocculation of mixed culture microorganisms
Kara, Fadime; Sanin, Faika Dilek; Department of Biotechnology (2007)
Bioflocculation happens naturally and microorganisms aggregate into flocs during wastewater treatment. It is critical to understand the mechanisms of bioflocculation and its impact on the following solid/liquid separation process since seperation by settling is one of the key aspects that determine the efficiency and the overall economy of activated sludge systems. Bioflocculation occurs via extracellular polymeric substances (EPS) and cations by creating a matrix to hold various floc components together so...
Citation Formats
A. Cihan, “The rise velocity of an air bubble in coarse porous media : theoretical studies ,” M.S. - Master of Science, Middle East Technical University, 2004.