Sorption of cadmium and lead on activated carbons produced from resins and agricultural wastes

Akgün, Aydın Mert
In this work, adsorption of cadmium and lead from waste solutions by activated carbon was investigated. The activated carbons were produced from ion exchange resins and agricultural wastes in previous thesis studies under different conditions. BET surface areas of the activated carbons were given in previous studies. They were further characterized in this study. Slurry pH was measured by change in pH of water in which activated carbon was added. Methylene blue numbers were determined by adsorption of methylene blue onto activated carbons. Isoelectric points were determined by measuring zeta potential of activated carbons at different equilibrium pH. Results of the first part of sorption experiments showed a strong dependency of adsorption on pH since adsorption mechanism was exchange of heavy metal ions with H+ ions on the surface. Activated carbon produced from hazelnut shell had the highest removal efficiency with 95% Pb removal and 50% Cd removal at pH 6. However, activated carbon produced from apricot stone removed only 25% and 80% of Cd and Pb, respectively at the same pH. Initial concentration had positive effect on percent removal as shown by the second part of sorption experiments. This can be explained with saturation of available active sites as initial concentration increased. Activated carbon produced from hazelnut shell could remove 42% of Cd and 85% of Pb, but the one produced from synthetic resin couldn̕t remove Cd and Pb more than 20% and 35%, respectively at initial concentration of 100 mg/l. Langmuir and Freundlich isotherms were plotted and both isotherms were in good agreement with experimental data.
Citation Formats
A. M. Akgün, “Sorption of cadmium and lead on activated carbons produced from resins and agricultural wastes,” M.S. - Master of Science, Middle East Technical University, 2005.