Development of a 3-camera vision system and the saddle motion analysis of horses via this system

Download
2009
Doğan, Gözde
One of the purposes of this study is to develop a vision system consisting of 3 inexpensive, commercial cameras. The system is intended to be used for tracking the motion of objects in a large calibration volume, typically 6.5 m. wide and 0.7 m. high. Hence, a mechanism is designed and constructed for the calibration of the cameras. The second purpose of the study is to develop an algorithm, which can be used to obtain the kinematic data associated with a rigid body, using a vision system. Special filters are implemented in the algorithm to identify the 3 markers attached on the body. Optimal curves are fitted to the position data of the markers after smoothing the data appropriately. The outputs of the algorithm are the position, velocity and acceleration of any point (visible or invisible) on the body and the angular velocity and acceleration of the body. The singularities associated with the algorithm are also determined. Using the vision setup and the developed algorithm for tracking the kinematics of a rigid body, the motions of the saddles of different horses are investigated for different gaits. Similarities and differences between horses and/or gaits are analyzed to lead to quantitative results. Using the limits induced by the whole body vibration of humans, for the first time in the world, daily, allowable riding time and riding distances are determined for different horses and gaits. Furthermore, novel, quantitative horse comfort indicators are proposed. Via the experiments performed, these indicators are shown to be consistent with the comfort assessment of experienced riders. Finally, in order to implement the algorithms proposed in this study, a computer code is developed using MATLAB®.

Suggestions

Dynamic modeling of an excavator during digging and simulating the motion
Özünlü, Özcan Mutlu; Söylemez, Eres; Department of Mechanical Engineering (2009)
The aim of this study is to perform the dynamic force analysis of a 3-degrees-of-freedom excavator during digging the soil and to simulate the motion on computer screen. Standard load calculations are done statically, therefore the effects of forces changing with time on the system cannot be observed. The dynamic analysis method used in the thesis is Recursive Newton – Euler Method and the numerical analysis method for simulation is 4th Order Runge – Kutta Method. After this study, the effects of sudden vel...
Dynamic modelling of a backhoe-loader
Kılıç, Boran; Balkan, Raif Tuna; Department of Mechanical Engineering (2009)
The aim of this study is to develop a dynamic model of the loader system of a backhoe-loader. Rigid bodies and joints in the loader mechanism and loader hydraulic system components are modelled and analyzed in the same environment using the physical modelling toolboxes inside the commercially available simulation software, MATLAB/Simulink. Interaction between the bodies and response of the hydraulic system are obtained by co-operating the mechanical and hydraulic analyses. System variables such as pressure,...
Development of realistic head models for electromagnetic source imaging of the human brain
Akahn, Z.; Acar, C.E.; Gençer, Nevzat Güneri (Institute of Electrical and Electronics Engineers (IEEE); 2002-12-07)
In this work, a methodology is developed to solve the forward problem of electromagnetic source imaging using realistic head models. For this purpose, first segmentation of the 3 dimensional MR head images is performed. Then triangular, quadratic meshes are formed for the interfaces of the tissues. Thus, realistic meshes, representing scalp, skull, CSF, brain and eye tissues, are formed. At least 2000 nodes for the scalp and 5000 for the cortex are needed to obtain reasonable geometrical approximation. Solu...
Modeling and experimental evaluation of variable speed pump and valve controlled hydraulic servo drives
Çalışkan, Hakan; Balkan, Raif Tuna; Department of Mechanical Engineering (2009)
In this thesis study, a valveless hydraulic servo system controlled by two pumps is investigated and its performance characteristics are compared with a conventional valve controlled system both experimentally and analytically. The two control techniques are applied on the position control of a single rod linear actuator. In the valve controlled system, the flow rate through the actuator is regulated with a servovalve; whereas in the pump controlled system, two variable speed pumps driven by servomotors reg...
Acoustical analysis of exhaust mufflers for earth-moving machinery
Olğar, Tarık; Çalışkan, Mehmet; Department of Mechanical Engineering (2009)
This study concerns with acoustical analysis of exhaust mufflers for earth-moving machinery. The study arises from the fact that there is a need for further noise reduction emitted by earth-moving machinery produced by Hidromek Inc. in order to be on the safe side of the limits stated in European Noise Directive 2000/14/EC. The acoustical performance of the muffler is investigated both experimental and numerical means. A three-dimensional finite element method is performed to calculate the transmission loss...
Citation Formats
G. Doğan, “Development of a 3-camera vision system and the saddle motion analysis of horses via this system,” M.S. - Master of Science, Middle East Technical University, 2009.