Continuous time mean variance optimal portfolios

Download
2011
Sezgin Alp, Özge
The most popular and fundamental portfolio optimization problem is Markowitz's one period mean-variance portfolio selection problem. However, it is criticized because of its one period static nature. Further, the estimation of the stock price expected return is a particularly hard problem. For this purpose, there are a lot of studies solving the mean-variance portfolio optimization problem in continuous time. To solve the estimation problem of the stock price expected return, in 1992, Black and Litterman proposed the Bayesian asset allocation method in discrete time. Later on, Lindberg has introduced a new way of parameterizing the price dynamics in the standard Black-Scholes and solved the continuous time mean-variance portfolio optimization problem. In this thesis, firstly we take up the Lindberg's approach, we generalize the results to a jump-diffusion market setting and we correct the proof of the main result. Further, we demonstrate the implications of the Lindberg parameterization for the stock price drift vector in different market settings, we analyze the dependence of the optimal portfolio from jump and diffusion risk, and we indicate how to use the method. Secondly, we present the Lagrangian function approach of Korn and Trautmann and we derive some new results for this approach, in particular explicit representations for the optimal portfolio process. In addition, we present the L2-projection approach of Schweizer for the continuous time mean-variance portfolio optimization problem and derive the optimal portfolio and the optimal wealth processes for this approach. While, deriving these results as the underlying model, the market parameterization of Lindberg is chosen. Lastly, we compare these three different optimization frameworks in detail and their attractive and not so attractive features are highlighted by numerical examples.

Suggestions

On forward interest rate models : via random fields and Markov jump processes
Altay, Sühan; Körezlioğlu, Hayri; Department of Financial Mathematics (2007)
The essence of the interest rate modeling by using Heath-Jarrow-Morton framework is to find the drift condition of the instantaneous forward rate dynamics so that the entire term structure is arbitrage free. In this study, instantaneous forward interest rates are modeled using random fields and Markov Jump processes and the drift conditions of the forward rate dynamics are given. Moreover, the methodology presented in this study is extended to certain financial settings and instruments such as multi-country...
Stochastic volatility, a new approach for vasicek model with stochastic volatility
Zeytun, Serkan; Hayfavi, Azize; Department of Financial Mathematics (2005)
In the original Vasicek model interest rates are calculated assuming that volatility remains constant over the period of analysis. In this study, we constructed a stochastic volatility model for interest rates. In our model we assumed not only that interest rate process but also the volatility process for interest rates follows the mean-reverting Vasicek model. We derived the density function for the stochastic element of the interest rate process and reduced this density function to a series form. The para...
A Comparison of constant and stochastic volatility in Merton’s portfolio optimization problem
Öztürk, Ozan; Sezer, Ali Devin; Department of Financial Mathematics (2018)
Merton's Portfolio Problem is a dynamic portfolio choice problem, which assumes asset returns and covariances are constant. There is well documented evidence that, stock returns and volatilities are correlated. Therefore, stochastic volatility models in dynamic portfolio problems can give better results. The work [J. Liu, Portfolio selection in stochastic environments, Review of Financial Studies, 20(1), 2007] developed a general dynamic portfolio model that allows the parameters of the model to depend on a...
Multicriteria portfolio optimization
Tuncer Şakar, Ceren; Köksalan, Murat; Department of Industrial Engineering (2013)
Portfolio optimization is the problem of allocating funds between available investment options in the financial market. This thesis develops several approaches to multicriteria portfolio optimization. The use of multiple criteria is justified by demonstrating their effects on decision and objective spaces of the problem. The performance of a genetic algorithm with two and three criteria is studied; and a preference-based genetic algorithm to solve portfolio optimization with complicating constraints is deve...
Optimizable multiresolution quadratic variation filter for high-frequency financial data
Şen, Aykut; Akyıldız, Ersan; Department of Financial Mathematics (2009)
As the tick-by-tick data of financial transactions become easier to reach, processing that much of information in an efficient and correct way to estimate the integrated volatility gains importance. However, empirical findings show that, this much of data may become unusable due to microstructure effects. Most common way to get over this problem is to sample the data in equidistant intervals of calendar, tick or business time scales. The comparative researches on that subject generally assert that, the most...
Citation Formats
Ö. Sezgin Alp, “Continuous time mean variance optimal portfolios,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.