A Generalized mathematical model of dc catenary lines

Download
2018
Sezgin, Mustafa Erdem
Most of the subway systems are powered by electricity around the world. Although both AC and DC systems can be employed for energization, DC electrified systems are commonly preferred. The DC catenary line voltage can be calculated trivially for stationary systems at steady state. However, accurate modeling of the catenary voltage during the movement of the subway trains is cumbersome, as it requires solution of differential equation systems. This thesis proposes a generalized model for catenary voltage variation of DC powered systems. One of the challenges of modeling problem is calculation of the electrical parameters of the system, because of the non-regular shape of the rails, on which the electric current flows. The thesis firstly develops an analytical method for accurate computation of electrical parameters of the system, and validates it using finite elements analysis. After that, by using the electrical parameters the voltage and current variations through the catenary line are investigated analytically for different mode of operations of the subway trains, such as constant speed and accelerating/decelerating operations. Because of the dynamical behavior of the system, both time and position dependent differential equations are defined during the analytical derivations. The solution of the system based on differential equations is not trivial, and requires significant computational burden, Therefore, this work, proposes a linearized method in order to improve the computational performance of the derived model. The proposed linear method enables solution of the system with improved computational performance, while maintaining a high accuracy. Moreover, the effect of the regenerative braking and the effect of multiple substation and train are investigated. The results of the analytical solution of voltage variation are compared with the real life test results.

Suggestions

Optimal phasor measurement unit (PMU) placement for the power systems with existing SCADA measurements
Ertürk, Bulut; Göl, Murat; Department of Electrical and Electronics Engineering (2017)
It is extremely important to maintain efficiency, sustainability and reliability of the generation, transmission and distribution of the electrical energy; hence it is mandatory to monitor the system in real time. State estimation has a key role in real time monitoring of a power system. The considered power system has to be observable in order to perform state estimation. Traditionally, power system state estimators employ SCADA measurements. However, as the number of Phasor Measurement Units (PMUs) increa...
An improved energy requirement prediction for queueing applications of electric vehicles based on parameter estimation
Sağlam, Berkay; Göl, Murat; Department of Electrical and Electronics Engineering (2022-8)
The use of electric vehicles has increased in recent years. Although they have many benefits to the environment such as reduced carbon emissions, charging of vehicles brings some new challenges for power systems such as overloading, reliability problems, etc. Charging of electric vehicles should be managed to overcome these problems. Queueing strategies are one of the management methods. These strategies are applied to obtain a feasible operation that depends on the decisions made considering system propert...
Assessment of impacts of electric vehicles on low voltage distribution networks in Turkey
Temiz, Armağan; Güven, Ali Nezih; Department of Electrical and Electronics Engineering (2015)
The number of Electric Vehicles (EVs) has reached a substantial value all over the globe due to economic and environmental factors. The increasing penetration of EVs to the distribution grids urges the requirement to investigate the impacts of EVs on the planning and operation of distribution networks. Despite the fact that there are numerous studies discussing the impacts of EVs on distribution grids, a particular study concerning the Turkish distribution networks does not exist. Therefore, this study focu...
Design of a radiation hardened PWM controller built on SOI
Kılıç, Emrecan; Külah, Haluk; Department of Electrical and Electronics Engineering (2018)
Design of efficient and compact switch-mode power supplies (SMPS) is a popular topic in power electronics. Silicon has been used as semiconductor material of switches in DCDC converters for decades. However, preference of using GaN as semiconductor material of switches in these topologies has recently increased due to their superior properties. GaN FETs have lower gate capacitance, lower channel resistance, higher frequency operation, higher breakdown voltage and higher temperature operation than silicon MO...
Design and manufacturing of a single langmuir probe for plasma measurements in hall effect thruster experiments
Yazıcıoğlu, Özge; Alemdaroğlu, Hüseyin Nafiz; Uluşen, Demet; Department of Aerospace Engineering (2014)
Electric propulsion is a technology which has been tested on ground and in space since 1960s. The goal of electric propulsion systems is to achieve thrust with high exhaust velocities using electricity. To date, more than 200 electric thrusters have been flown and operated successfully onboard communication satellites and deep-space scientific missions for years with zero failure rate, making the technology more attractive in recent years. Thrust, specific impulse, total efficiency and plume divergence are ...
Citation Formats
M. E. Sezgin, “A Generalized mathematical model of dc catenary lines,” M.S. - Master of Science, Middle East Technical University, 2018.