Coke Minimization during Conversion of Biogas to Syngas by Bimetallic Tungsten-Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route

2015-03-04
ARBAĞ, HÜSEYİN
YAŞYERLİ, SENA
YAŞYERLİ, NAİL
DOĞU, GÜLŞEN
Doğu, Timur
Crnivec, Ilja Gasan Osojnik
Pintar, Albin
Dry re-forming of methane with CO2 was investigated over bimetallic W and Ni incorporated mesoporous alumina catalysts prepared by the one-pot sol-gel route. Powdered materials were thoroughly characterized (N-2 physisorption, XRD, XPS, SEM-EDX, TGA-DTA, TPH) prior to and after catalytic runs performed at 600 and 750 degrees C. High surface area W-Ni incorporated mesoporous alumina catalysts (S-BET = 1781-92 m(2)/g) synthesized in this work showed excellent performance for the conversion of model biogas to synthesis gas. The Ni-W containing materials exhibited high catalytic activity, which was maintained throughout 150 h of time-on-stream (TOS) long-term operation at 750 degrees C. Increase of the W loading (0-10-15 wt %) at fixed nickel amount (5 wt %) resulted in prevented deactivation of the catalyst, most prominent at 600 degrees C, and minimization of coke formation on the surface of the catalyst. Tungsten incorporation was thus proven to significantly enhance and stabilize the overall catalyst performance.
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

Suggestions

Methane activation via bromination over sulfated Zirconia/SBA-15 catalysts
Değirmenci, Volkan; Üner, Deniz; Department of Chemical Engineering (2007)
Methane activation with bromine followed by the condensation of the methyl bromide into higher hydrocarbons or oxygenates is a novel route. However, the selective production of monobrominated methane (CH3Br) at high conversions is a crucial prerequisite. A reaction model was developed according to the kinetic data available in the literature and thoroughly studied to investigate the optimum reactor conditions for selective methane bromination in gas phase. It was concluded that at high methane (>90%) conver...
Methane to higher hydrocarbons via halogenation
Degirmenci, V; Üner, Deniz; Yılmaz, Ayşen (Elsevier BV, 2005-10-15)
Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. Th...
Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg
ARBAĞ, HÜSEYİN; YAŞYERLİ, SENA; YAŞYERLİ, NAİL; Doğu, Timur; DOĞU, GÜLŞEN (Springer Science and Business Media LLC, 2013-12-01)
Ni based mesoporous alumina (MA) catalysts were synthesized by sol-gel (SGA) and hydrothermal (MA) methods, following impregnation and one-pot synthesis routes and catalytic performances of these materials were tested in dry reforming of methane. Results proved the importance of synthesis procedure of the MA supports on the activity and coke resistance of the synthesized materials, containing 16 % Ni. Among these catalysts, MA prepared by the sol-gel technique (Ni@SGA) showed the highest activity in dry ref...
Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts
Ay, Hale; Üner, Deniz (2015-12-01)
Ceria supported Ni, Co monometallic and Ni-Co bimetallic catalysts were prepared by incipient wetness impregnation method, calcined at two different temperatures (700 degrees C and 900 degrees C) and tested for dry reforming of methane reaction at 700 degrees C. The activities of ceria-based Ni containing catalysts decreased with increasing calcination temperature accompanied by a decrease in coke deposition. While Ni/CeO2 and Ni-Co/CeO2 catalysts exhibited comparable high activities, Co/CeO2 catalysts exhi...
Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent
Uyar, Basar; Schumacher, Matthias; Gebicki, Jakub; Modigell, Michael (2009-08-01)
Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydr...
Citation Formats
H. ARBAĞ et al., “Coke Minimization during Conversion of Biogas to Syngas by Bimetallic Tungsten-Nickel Incorporated Mesoporous Alumina Synthesized by the One-Pot Route,” INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, pp. 2290–2301, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/29924.