Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the construction of a non-I.B.N. ring.
Date
1973
Author
Kirezci, Murat
Metadata
Show full item record
Item Usage Stats
65
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/3058
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
On the structure of universal non-IBN rings Vn,m.
Kirezci, Murat; Arf, Cahit; Department of Mathematics (1981)
On the integrability of a class of Monge-Ampere equations
BRUNELLI, J C; GÜRSES, METİN; Zheltukhın, Kostyantyn (World Scientific Pub Co Pte Lt, 2001-04-01)
We give the Lax representations for the elliptic, hyperbolic and homogeneous second order Monge-Ampere equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampere equations. Local as well nonlocal conserved densities are obtained.
On the arithmetic exceptionality of polynomial mappings
Küçüksakallı, Ömer (2018-02-01)
In this note we prove that certain polynomial mappings P-g(k) (x) is an element of Z[x] in n-variables obtained from simple complex Lie algebras g of arbitrary rank n1, are exceptional.
On the construction of the phase space of a singular system
Baleanu, D; Guler, Y (2000-03-01)
In this work we present a method for obtaining the true degrees of freedom for the singular systems using the canonical transformations in the Hamilton-Jacobi formalism. The validity of our proposal has been tested by two examples of singular Lagrangians and the results are in agreement with those obtained by other methods.
On the Eigenstructure of DFT Matrices
Candan, Çağatay (Institute of Electrical and Electronics Engineers (IEEE), 2011-03-01)
The discrete Fourier transform (DFT) not only enables fast implementation of the discrete convolution operation, which is critical for the efficient processing of analog signals through digital means, but it also represents a rich and beautiful analytical structure that is interesting on its own. A typical senior-level digital signal processing (DSP) course involves a fairly detailed treatment of DFT and a list of related topics, such as circular shift, correlation, convolution operations, and the connectio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kirezci, “On the construction of a non-I.B.N. ring.,” Middle East Technical University, 1973.