3D and 4D Printing of Polymers for Tissue Engineering Applications

Download
2019-07-09
Tamay, Dilara Goksu
DURSUN USAL, TUĞBA
Alagoz, Ayse Selcen
Yucel, Deniz
Hasırcı, Nesrin
Hasırcı, Vasıf Nejat
Three-dimensional (3D) and Four-dimensional (4D) printing emerged as the next generation of fabrication techniques, spanning across various research areas, such as engineering, chemistry, biology, computer science, and materials science. Three-dimensional printing enables the fabrication of complex forms with high precision, through a layer-by-layer addition of different materials. Use of intelligent materials which change shape or color, produce an electrical current, become bioactive, or perform an intended function in response to an external stimulus, paves the way for the production of dynamic 3D structures, which is now called 4D printing. 3D and 4D printing techniques have great potential in the production of scaffolds to be applied in tissue engineering, especially in constructing patient specific scaffolds. Furthermore, physical and chemical guidance cues can be printed with these methods to improve the extent and rate of targeted tissue regeneration. This review presents a comprehensive survey of 3D and 4D printing methods, and the advantage of their use in tissue regeneration over other scaffold production approaches.
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY

Suggestions

Design, simulation, and measurement of near-zero-index shells for electromagnetic beam generation
Eriş, Özgür; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2021-9-06)
In this study, design and simulation of three-dimensional (3D) shell structures, which generate directional radiation patterns from isotropic sources, with near-zero-index (NZI) characteristics, as well as their realizations via low-cost 3D printing are presented. Throughout the design process of NZI beam generators, both homogenized structures, in which near-zero relative permittivity and/or permeability values are enforced, and actual models involving periodic arrangements of dielectric rods are examined....
System integration of MEMS devices on flexible substrate for fully implantable cochlear implant applications
Soydan, Alper Kaan; Külah, Haluk; Department of Micro and Nanotechnology (2019)
This master thesis is a result of multidisciplinary research bringing together concepts in electronics engineering, implant technologies, materials science, microfabrication, and device physics. Advancements in healthcare technology and in-vivo implants, electronic devices implemented on flexible substrates are highly demanded in the near future. In order to create a physically flexible device which consists of rigid sub-systems serving distinct purposes and made up of varying types of materials, we need re...
Experimental analysis of curved laminated beam
Uzhan, Tevfik; Aşık, Mehmet Zülfü; Department of Engineering Sciences (2010)
In this thesis, experimental studies are carried out on curved laminated glass beams to form a database for the scientists who may like to test their mathematical models. Beams which are only free to rotate and constrained in radial direction at both ends are tested to make the data available for further calculations. Test setup is prepared to minimize error that could occur due to test setup and data readings. Material testing machine and 4 channel data collecting machine are used to measure the signals at...
Realization of multiband microwave metamaterials fabricated via low-cost inkjet printing
İbili, Hande; Keles, Selen; Eris, Ozgur; Ergül, Özgür Salih (2019-05-01)
We present design and computational analysis of multiband metamaterial structures that are fabricated via low-cost inkjet printing. In particular, three-dimensional arrangements of split-ring resonators with different sizes are considered to achieve bandstop characteristics at multiple frequencies. A fast and accurate solver is employed to analyze alternative arrangements, while considering different parameters to obtain strong resonances at desired frequencies. The obtained designs are fabricated in a low-...
Acceleration of molecular dynamics simulation for TERSOFF2 potential through reconfigurable hardware
Vargün, Bilgin; Erkoç, Şakir; Eminoğlu, Selim; Department of Micro and Nanotechnology (2012)
In nanotechnology, Carbon Nanotubes systems are studied with Molecular Dynamics Simulation software programs investigating the properties of molecular structure. Computational loads are very complex in these kinds of software programs. Especially in three body simulations, it takes a couple of weeks for small number of atoms. Researchers use supercomputers to study more complex systems. In recent years, by the development of sophisticated Field Programmable Gate Array (FPGA) Technology, researchers design s...
Citation Formats
D. G. Tamay, T. DURSUN USAL, A. S. Alagoz, D. Yucel, N. Hasırcı, and V. N. Hasırcı, “3D and 4D Printing of Polymers for Tissue Engineering Applications,” FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31134.