Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Anatomical meniscus construct with zone specific biochemical composition and structural organization
Date
2019-10-01
Author
Bahcecioglu, G.
Bilgen, B.
Hasırcı, Nesrin
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
A PCL/hydrogel construct that would mimic the structural organization, biochemistry and anatomy of meniscus was engineered. The compressive (380 +/- 40 kPa) and tensile modulus (18.2 +/- 0.9 MPa) of the PCL scaffolds were increased significantly when constructs were printed with a shifted design and circumferential strands mimicking the collagen organization in native tissue (p < 0.05). Presence of circumferentially aligned PCL strands also led to elongation and alignment of the human fibrochondrocytes. Gene expression of the cells in agarose (Ag), gelatin methacrylate (GelMA), and GelMA-Ag hydrogels was significantly higher than that of cells on the PCL scaffolds after a 21-day culture. GelMA exhibited the highest level of collagen type I (COL1A2) mRNA expression, while GelMA-Ag exhibited the highest level of aggrecan (AGO) expression (p < 0.001, compared to PCL). GelMA and GelMA-Ag exhibited a high level of collagen type II (COL2A1) expression (p < 0.05, compared to PCL). Anatomical scaffolds with circumferential PCL strands were impregnated with cell-loaded GelMA in the periphery and GelMA-Ag in the inner region. GelMA and GelMA-Ag hydrogels enhanced the production of COL 1 and COL 2 proteins after a 6-week culture (p < 0.05). COL 1 expression increased gradually towards the outer periphery, while COL 2 expression decreased. We were thus able to engineer an anatomical meniscus with a cartilage-like inner region and fibrocartilage-like outer region.
Subject Keywords
Zone-Specific Biochemical Composition
,
3D Printing
,
PCL/Dual Hydrogel
,
Human Fibrochondrocytes
,
Circumferential Fiber Orientation
URI
https://hdl.handle.net/11511/31512
Journal
BIOMATERIALS
DOI
https://doi.org/10.1016/j.biomaterials.2019.119361
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Peptide stapling by late-stage Suzuki-Miyaura cross-coupling
Gruss, Hendrik; Feiner, Rebecca C.; Mseya, Ridhiwan; Schroeder, David C.; Jewginski, Michat; Mueller, Kristian M.; Latajka, Rafat; Marıon, Antoıne; Sewald, Norbert (2022-01-01)
The development of peptide stapling techniques to stabilise alpha-helical secondary structure motifs of peptides led to the design of modulators of protein-protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki-Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both...
Serum cartilage oligomeric matrix protein accumulation decreases significantly after 12 weeks of running but not swimming and cycling training - A randomised controlled trial
Celik, Ozgur; SALCI, YAŞAR; Ak, Emre; KALACI, AYDINER; Korkusuz, Feza (2013-01-01)
Background: Acute effects of physical exercise on the deformational behaviour of articular cartilage and changes in cartilage oligomeric matrix protein (COMP) are definite. However, conclusive positive effects of fitness exercise on functional adaptation of articular cartilage have not been proved.
Metabolic Flux Analysis for Recombinant Protein Production by Pichia pastoris Using Dual Carbon Sources: Effects of Methanol Feeding Rate
Celik, Eda; Çalık, Pınar; Oliver, Stephen G. (Wiley, 2010-02-01)
The intracellular metabolic fluxes through the central carbon pathways in the bioprocess for recombinant human erythropoietin (rHuEPO) production by Pichia pastoris (Mut(+)) were calculated. to investigate the metabolic effects of dual carbon sources (methanol/sorbitol) and the methanol feed rate, and to obtain a deeper understanding the regulatory circuitry of P. pastoris, using the established stoichiometry-based model containing 102 metabolites and 141 reaction fluxes. Four fed-batch operations with (MS-...
Bone tissue generation on biodegradable polymeric scaffolds
Torun Köse, Gamze; Hasırcı, Vasıf Nejat; Korkusuz, Feza; Department of Biotechnology (2002)
In the present study, tissue engineered bone was produced on calcium phosphate loaded collagen and PHBV8 matrices. Osteoblasts isolated from rat bone marrow were characterized by light microscopy, alkaline phosphatase (ALP) activity, osteocalcin determination assay, and Western blots for integrin. Population doubling time of the cells was found as 50 ± 2 h at 37 °C in a CO2 incubator. PHBV8 foams iiiwere treated with rf-oxygen plasma to modify their surface chemistry and hydrophilicity to increase the reatt...
Deformation Analysis of Deep-Drawing by a Finite Element Method
Darendeliler, Haluk (1991-01-01)
A finite element method is developed to study the elastic-plastic deformation of sheet materials in the presence of large strains and large displacements. It is based on updated Lagrangian type formulation and membrane shell theory. The sheet is assumed to be isotropic and rate insensitive which obeys J2 flow theory. The work-hardening characterstics of material and Coulomb friction between the sheet metal and forming tools are incorporated. The method is used for modelling partial deep-drawing with the app...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bahcecioglu, B. Bilgen, N. Hasırcı, and V. N. Hasırcı, “Anatomical meniscus construct with zone specific biochemical composition and structural organization,”
BIOMATERIALS
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31512.