Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions

Rahmanıan, M.
Fırouz-Abadı, R. D.
Ciğeroğlu, Ender
A fast and efficient reduced order formulation is presented for the first time to study dynamics and stability of conical/cylindrical shells with internal fluid flows. The structural and fluid formulations are developed based on general assumptions to avoid any deficiency due to modeling. Their respective solutions and the final solution to the coupled field problem are also developed in a way to be capable of capturing any desirable set of boundary conditions. In addition to the flexibility provided'by the solution methodology and generalization provided by the formulation, current solution proposes an additional advantage over others which is the minimal computational cost due to the special reduced order model proposed. Therefore, stability margins of the problem at hand can be obtained both efficiently and accurately. Proposed formulation is verified by comparing the results of the present study with the results available in literature for cylindrical/conical shells at different boundary conditions. Comprehensive parameter studies are performed in order to draw general insights over the effects of boundary conditions, semi-vertex angle and compressibility on the dynamics and stability margins of conical shells with internal fluid flows.


Free vibrations of moderately thick truncated conical shells filled with quiescent fluid
Rahmanian, M.; Firouz-Abadi, R. D.; Ciğeroğlu, Ender (2016-05-01)
A novel reduced order formulation is proposed for the vibration analysis of conical shells containing stationary fluid. Hamiltonian approach is followed to obtain the governing equations of motion for the structure. Utilizing the Navier-Stokes equations and simplifying for irrotational, compressible and inviscid assumptions, the final fluid equation is obtained. A general solution based on the Galerkin method is proposed for the conical shell in vacuum. Several boundary conditions are investigated to show t...
Analysis and control of complex flows in U-bends using computational fluid dynamics
Güden, Yiğitcan; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2014)
Analysis and control of flow structure is crucial in the sense that the increase in the ratio of inertial and centrifugal forces to viscous forces destabilizes the flow and creates a three-dimensional complex flow consisting of stream wise parallel counter-rotating vortices, so-called Dean vortices. In addition, due to the curvature in U-bends, in line with these vortices, a high level of turbulence is detected, which is quite critical in considering noise problems and structural failures. In this thesis, c...
Modeling of newtonian fluids and cuttings transport analysis in high inclination wellbores with pipe rotation
Sorgun, Mehmet; Parlaktuna, Mahmut; Aydın, İsmail; Department of Petroleum and Natural Gas Engineering (2010)
This study aims to investigate hydraulics and the flow characteristics of drilling fluids inside annulus and to understand the mechanism of cuttings transport in horizontal and deviated wellbores. For this purpose, initially, extensive experimental studies have been conducted at Middle East Technical University, Petroleum & Natural Gas Engineering Flow Loop using water and numerous drilling fluids for hole inclinations from horizontal to 60 degrees, flow velocities from 0.64 m/s to 3.05 m/s, rate of penetra...
End effect evaluation in rheological measurement of drilling fluids using Coutte coaxial cylinder viscometer
Gücüyener, I. Hakki; Kök, Mustafa Verşan; Batmaz, Taner (2002-05-01)
This paper demonstrates the order of influence of end effects on the application of a theory to determine and correct the end effects in Couette coaxial cylinder rotational viscometers, which are commonly used for the rheological evaluation of drilling fluids. It is found that higher shear stresses are measured due to end effects and, consequently, this error bearing shear stress-shear rate data leads to unreliable predictions of the rheological parameters. Evaluation of the shear stress-shear rate data obt...
Estimation of Turkish ict sectors and their relationships to productivity growth by input-output (i/o) analysis
Alyaz, Serhat; Şen, Tayyar Durmuş; Department of Industrial Engineering (2003)
The aim of this thesis is to investigate the effects of Mn content and alloying additions such as Cr and Mo, and various heat treatment procedures on both microstructure and mechanical properties of austenitic manganese (Hadfield) steels. For this purpose, steels with two different Mn content were considered (12-14 Mn, 16-18 Mn). First, five different heat treatment procedures were applied to the as-cast 12-14 Mn specimens to decide the procedure resulting the optimum tensile properties. Then, the specimens...
Citation Formats
M. Rahmanıan, R. D. Fırouz-Abadı, and E. Ciğeroğlu, “Dynamics and stability of conical/cylindrical shells conveying subsonic compressible fluid flows with general boundary conditions,” INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, pp. 42–61, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34640.