Skuller: A volumetric shape registration algorithm for modeling skull deformities

2015-07-01
We present an algorithm for volumetric registration of 3D solid shapes. In comparison to previous work on image based registration, our technique achieves higher efficiency by leveraging a template tetrahedral mesh. In contrast to point- and surface-based registration techniques, our method better captures volumetric nature of the data, such as bone thickness. We apply our algorithm to study pathological skull deformities caused by a particular condition, i.e., craniosynostosis. The input to our system is a pair of volumetric 3D shapes: a tetrahedral mesh and a voxelized object represented by a set of voxel cells segmented from computed tomography (CT) scans. Our general framework first performs a global registration and then launches a novel elastic registration process that uses as much volumetric information as possible while deforming the generic template tetrahedral mesh of a healthy human skull towards the underlying geometry of the voxel cells. Both data are high-resolution and differ by large non-rigid deformations. Our fully-automatic solution is fast and accurate, as compared with the state of the arts from the reconstruction and medical image registration fields. We use the resulting registration to match the ground-truth surfaces extracted from the medical data as well as to quantify the severity of the anatomical deformity.
MEDICAL IMAGE ANALYSIS

Suggestions

3B Izometrik Şekil Eşleme
Sahillioğlu, Yusuf (2010-06-01)
3B izometrik şekiller arasındaki eşleme problemini ele alıyoruz. Önerdiğimiz yöntem, verilen iki izometrik şekil arasındaki izometrik sapmayı enküçülten optimal eşlemeyi otomatik olarak bulabilmektedir.İzometri hatasını iki adımda eniyiliyoruz. İlk adımda, şekil yüzeylerinden örneklenmiş bir örnek 3B noktalar kesel ilginlik bilgisine dayanarak spektral uzaya aktarılır.İlk eşleme spektral uzayda tam iki kısımlı bir çizge eşleştirme yöntemi kullanarak izometri hatasının polinom zamanda enküçültülmesiyle eld...
3D Shape Correspondence by Isometry Driven Greedy Optimization
Sahillioğlu, Yusuf (null; 2010-06-01)
We present an automatic method that establishes 3D correspondence between isometric shapes. Our goal is to find an optimal correspondence between two given (nearly) isometric shapes, that minimizes the amount of deviation from isometry. We cast the problem as a complete surface correspondence problem. Our method first divides the given shapes to be matched into surface patches of equal area and then seeks for a mapping between the patch centers which we refer to as base vertices. Hence the correspondence is...
Partial 3-D Correspondence from Shape Extremities
Sahillioğlu, Yusuf; Yemez, Y. (2014-09-01)
We present a 3-D correspondence method to match the geometric extremities of two shapes which are partially isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank-and-vote-and-combine algorithm identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled extremities. Th...
Coarse-to-fine surface reconstruction from silhouettes and range data using mesh deformation
Sahillioğlu, Yusuf; Yemez, Y. (2010-03-01)
We present a coarse-to-fine surface reconstruction method based on mesh deformation to build watertight surface models of complex objects from their silhouettes and range data. The deformable mesh, which initially represents the object visual hull, is iteratively displaced towards the triangulated range surface using the line-of-sight information. Each iteration of the deformation algorithm involves smoothing and restructuring operations to regularize the surface evolution process. We define a non-shrinking...
Shape from silhouette using topology-adaptive mesh deformation
Yemez, Y.; Sahillioğlu, Yusuf (2009-10-01)
We present a computationally efficient and robust shape from silhouette method based on topology-adaptive mesh deformation, which can produce accurate, smooth, and topologically consistent 3D mesh models of complex real objects. The deformation scheme is based on the conventional snake model coupled with local mesh transform operations that control the resolution and uniformity of the deformable mesh. Based on minimum and maximum edge length constraints imposed on the mesh, we describe a fast collision dete...
Citation Formats
Y. Sahillioğlu, “Skuller: A volumetric shape registration algorithm for modeling skull deformities,” MEDICAL IMAGE ANALYSIS, pp. 15–27, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36863.