Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Constructing sequences with high nonlinear complexity using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve
Date
2019-06-01
Author
Geil, Olav
Özbudak, Ferruh
Ruano, Diego
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
Using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve over a finite field, we construct sequences with improved high nonlinear complexity. In particular we improve the bound obtained in Niederreiter and Xing (IEEE Trans Inf Theory 60(10):6696-6701, 2014, Theorem3) considerably and the bound in Niederreiter and Xing (2014, Theorem4) for some parameters.
Subject Keywords
Algebra and Number Theory
URI
https://hdl.handle.net/11511/37254
Journal
SEMIGROUP FORUM
DOI
https://doi.org/10.1007/s00233-018-9976-8
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
An identification theorem for groups of finite Morley rank and even type
Berkman, A; Borovik, AV (Elsevier BV, 2003-08-15)
The paper contains a construction of a definable BN-pair in a simple group of finite Morley rank and even type with a sufficiently good system of 2-local parabolic subgroups. This provides 'the final identification theorem' for simple groups of finite Morley rank and even type.
A generic identification theorem for L*-groups of finite Morley rank
Berkman, Ayse; Borovik, Alexandre V.; Burdges, Jeffrey; Cherfin, Gregory (Elsevier BV, 2008-01-01)
This paper provides a method for identifying "sufficiently rich" simple groups of finite Morley rank with simple algebraic groups over algebraically closed fields. Special attention is given to the even type case, and the paper contains a number of structural results about simple groups of finite Morley rank and even type.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Geil, F. Özbudak, and D. Ruano, “Constructing sequences with high nonlinear complexity using the Weierstrass semigroup of a pair of distinct points of a Hermitian curve,”
SEMIGROUP FORUM
, pp. 543–555, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37254.