Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On maximal curves and linearized permutation polynomials over finite fields
Date
2001-08-08
Author
Özbudak, Ferruh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
380
views
0
downloads
Cite This
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
Subject Keywords
Algebra and Number Theory
URI
https://hdl.handle.net/11511/48715
Journal
Journal of Pure and Applied Algebra
DOI
https://doi.org/10.1016/s0022-4049(00)00112-2
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
A generic identification theorem for L*-groups of finite Morley rank
Berkman, Ayse; Borovik, Alexandre V.; Burdges, Jeffrey; Cherfin, Gregory (Elsevier BV, 2008-01-01)
This paper provides a method for identifying "sufficiently rich" simple groups of finite Morley rank with simple algebraic groups over algebraically closed fields. Special attention is given to the even type case, and the paper contains a number of structural results about simple groups of finite Morley rank and even type.
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Some maximal function fields and additive polynomials
GARCİA, Arnaldo; Özbudak, Ferruh (Informa UK Limited, 2007-01-01)
We derive explicit equations for the maximal function fields F over F-q(2n) given by F = F-q(2n) (X, Y) with the relation A(Y) = f(X), where A(Y) and f(X) are polynomials with coefficients in the finite field F-q(2n), and where A(Y) is q- additive and deg(f) = q(n) + 1. We prove in particular that such maximal function fields F are Galois subfields of the Hermitian function field H over F-q(2n) (i.e., the extension H/F is Galois).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Özbudak, “On maximal curves and linearized permutation polynomials over finite fields,”
Journal of Pure and Applied Algebra
, pp. 87–102, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48715.