A Revertible, Autonomous, Self-Assembled DNA-Origami Nanoactuator

2011-12-01
MARİNİ, Monica
Piantanida, Luca
Musetti, Rita
Bek, Alpan
Dong, Mingdong
Besenbacher, Flemming
Lazzarino, Marco
Firrao, Giuseppe
A DNA-origami actuator capable of autonomous internal motion in accord to an external chemical signal was designed, built, operated and imaged. The functional DNA nanostructure consists of a disk connected to an external ring in two, diametrically opposite points. A single stranded DNA, named probe, was connected to two edges of the disk perpendicularly to the axis of constrain. In the presence of a hybridizing target molecule, the probe coiled into a double helix that stretched the inner disk forcing the edges to move toward each other. The addition of a third single stranded molecule that displaced the target from the probe restored the initial state of the origami. Operation, dimension and shape were carefully characterized by combining microscopy and fluorescence techniques.
NANO LETTERS

Suggestions

A Frequency Tunable Metamaterial Resonator using Varactor Diodes
Nesimoglu, Tayfun; Sabah, Cumali (2016-11-16)
A frequency tunable resonator topology is proposed that consists of an S-shaped resonator, a ground frame and a feeding transmission line. Tunability is achieved by using reverse biased varactor diodes employed at critical locations on the structure. As well as being a tunable resonator, the structure also provides tunable metamaterial properties. Reflection and transmission parameters, electric and magnetic field distributions, and permittivity and permeability at each tuned frequency were analyzed and sho...
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
A new jacobian matrix calculation method to decrease computational time in periodic force response analysis of nonlinear structures
Kızılay, Hazım Sef; Ciğeroğlu, Ender; Department of Mechanical Engineering (2019)
The contact interfaces between the components used in high speed systems such as the turbo machinery cause nonlinear vibrations. In order to understand the dynamic characteristic of nonlinear systems, it is important to perform nonlinear vibration analysis. In nonlinear vibration analysis, due to the properties of nonlinear elements used, it is not possible to calculate the Jacobian matrix analytically or it becomes very complicated and difficult, therefore, Jacobian matrix is calculated as numerically. In ...
Design and fabrication of strained light emitting germanium microstructures by liquid phase epitaxy
Ünlü, Buse; Yerci, Selçuk; Boztuğ Yerci, Çiçek; Department of Micro and Nanotechnology (2021-9)
Germanium is compatible with CMOS technology and can be utilized for the development of an integrated laser on Si platforms. Nevertheless, it is a very inefficient light emitter owning to its indirect bandgap. On the other hand, the application of tensile strain reduces the split in between direct and indirect band edges of Ge, which in turn enhances its light emission efficiency, and converts it into a direct bandgap material. In this thesis, firstly finite element model simulations are performed to determ...
A Current Source Converter-Based Active Power Filter for Mitigation of Harmonics at the Interface of Distribution and Transmission Systems
Terciyanli, Alper; Avci, Tulay; Yilmaz, Ilker; Ermis, Cezmi; Kose, Kemal Nadir; Acik, Adnan; Kalaycioglu, Alper Sabri; Akkaya, Yener; Cadirci, Isik; Ermiş, Muammer (2012-07-01)
A medium-power current source converter (CSC)-based shunt active power filter (APF) system is designed and implemented to suppress the amplification of low-order harmonics at the medium-voltage (MV) interface bus between the distribution and transmission systems, owing to the presence of large shunt capacitor banks installed only for reactive power compensation. Four CSC-based APF modules designed at 1.0 kV are operated in parallel and connected to the 31.5-kV MV bus via a specially designed coupling transf...
Citation Formats
M. MARİNİ et al., “A Revertible, Autonomous, Self-Assembled DNA-Origami Nanoactuator,” NANO LETTERS, pp. 5449–5454, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37785.