A controlled genetic programming approach for the deceptive domain

2004-08-01
KORKMAZ, EMİN ERKAN
Üçoluk, Göktürk
Traditional genetic programming (GP) randomly combines subtrees by applying crossover. There is a growing interest in methods that can control such recombination operations in order to achieve faster convergence. In this paper, a new approach is presented for guiding the recombination process for genetic programming. The method is based on extracting the global information of the promising solutions that appear during the genetic search. The aim is to use this information to control the crossover operation afterwards. A separate control module is used to process the collected information. This module guides the search process by sending feedback to the genetic engine about the consequences of possible recombination alternatives.
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS

Suggestions

Evaluation of crossover techniques in genetic algorithm based optimum structural design
Hasançebi, Oğuzhan (2000-11-01)
Crossover is one of the three basic operators in any genetic algorithm (GA). Several crossover techniques have been proposed and their relative merits are currently under investigation. This paper starts with a brief discussion of the working scheme of the GAs and the crossover techniques commonly used in previous GA applications. Next, these techniques are tested on two truss size optimization problems, and are evaluated with respect to exploration and exploitation aspects of the search process. Finally, t...
A parallel ant colony optimization algorithm based on crossover operation
Kalınlı, Adem; Sarıkoç, Fatih (Springer, 2018-11-01)
In this work, we introduce a new parallel ant colony optimization algorithm based on an ant metaphor and the crossover operator from genetic algorithms.The performance of the proposed model is evaluated usingwell-known numerical test problems and then it is applied to train recurrent neural networks to identify linear and nonlinear dynamic plants. The simulation results are compared with results using other algorithms.
A hybrid evolutionary performance improvement procedure for optimisation of continuous variable discharge concentrators
Sakuhuni, Givemore; Klein, Bern; Altun, Naci Emre (2015-05-05)
An iterative hybrid performance improvement approach integrating artificial neural network modelling and Pareto genetic algorithm optimisation was developed and tested. The optimisation procedure, code named NNREGA, was tested for tuning pilot scale Continuous Variable Discharge Concentrator (CVD) in order to simultaneously maximise recovery and upgrade ratio of gold bearing sulphides from a polymetallic massive sulphide ore. For the tests the CVD was retrofitted during normal operation on the flotation tai...
A new likelihood approach to autonomous multiple model estimation
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper presents an autonomous multiple model (AMM) estimation algorithm for hybrid systems with sudden changes in their parameters. Estimates of Kalman filters (KFs) that are tuned and employed for different system modes are merged based on a newly defined likelihood function without any necessity for filter interaction. The proposed likelihood function is composed of two measures, the filter agility measure and the steady-state error measure. These measures are derived based on filter adaptation rules....
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
Citation Formats
E. E. KORKMAZ and G. Üçoluk, “A controlled genetic programming approach for the deceptive domain,” IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, pp. 1730–1742, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38695.