Ab initio mechanical response: Internal friction and structure of divacancies in silicon

2005-01-01
Toffoli, Hande
Arias, TA
This Letter introduces an ab initio study of the full activation-volume tensor of crystalline defects as a means to make contact with mechanical response experiments. We present a theoretical framework for the prediction of the internal friction associated with divacancy defects and give the first ab initio value for this quantity in silicon. Finally, making a connection with defect alignment studies, we give the first unambiguous resolution of the debate surrounding ab initio verification of the ground-state structure of the defect.
PHYSICAL REVIEW LETTERS

Suggestions

Progressive changes in surface structure and electronic properties on Si(001) surface by CaF2 adsorption
Alzahrani, A. Z.; Usanmaz, D. (AIP Publishing, 2011-06-15)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic geometry and electronic structures of calcium fluoride (CaF2) on the Si(001) surface. We have considered the experimentally observed (2 x 1) and (3 x 1) reconstructions with different bonding configurations of the CaF2 molecule on the Si(001) surface. Our total energy calculations suggest that the (3 x 1) structure is slightly more preferable than the (2 x 1). The key structural par...
Interfacial and structural properties of sputtered HfO2 layers
AYGÜN ÖZYÜZER, GÜLNUR; Yıldız, İlker (AIP Publishing, 2009-07-01)
Magnetron sputtered HfO2 layers formed on a heated Si substrate were studied by spectroscopic ellipsometer (SE), x-ray diffraction (XRD), Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiOx suboxide layer at the HfO2/Si interface is unavoidable. The HfO2 thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O-2/Ar gas ratio during sputtering, sputtering time, ...
Studies of Charm Quark Diffusion inside Jets Using Pb-Pb and pp Collisions at root s(NN)=5.02 TeV
Sirunyan, A. M.; et. al. (American Physical Society (APS), 2020-09-01)
The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with p(T)(jet) > 60 GeV/c and D-0 mesons with p(T)(D) > 4 GeV/c in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of root s(NN) = 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D-0 mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as t...
Thermodynamic study on the magnetic transition and structural phase transition in [(CH3)(2)NH2][Na0.5Fe0.5(HCOO)(3)] by using the Landau phenomenological model
Yurtseven, Hasan Hamit (AIP Publishing, 2020-11-01)
In this study, we apply the Landau phenomenological model to describe magnetic transition and structural phase transition in a metal formate framework (MOF) of the ferromagnetic [(CH3)(2)NH2][Na0:5Fe0:5(HCOO)(3)], namely, DMNaFe. By using the observed data from the literature for the magnetization, the excess heat capacity (Delta CP), and the dielectric constant (e), we predict some thermodynamic quantities as a function of temperature close to the magnetic transition (T-M 1/4 8:5K) and structural (T-c 1/4 ...
Progressive structural and electronic properties of nano-structured carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (AIP Publishing, 2013-05-21)
Ab initio calculations, based on the planewave pseudopotential method and the density functional theory, have been reported on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated thin armchair graphene nanoribbons (N-a-AGNR) of dimer line numbers N-a = 4 and 5. We have considered chains of several lengths (n = 4-9 atoms) and with different forms of attachment with the AGNRs. It is found that odd-numbered chains are metallic in nature, with ...
Citation Formats
H. Toffoli and T. Arias, “Ab initio mechanical response: Internal friction and structure of divacancies in silicon,” PHYSICAL REVIEW LETTERS, pp. 0–0, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43825.