Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In situ seismic testing of a reinforced autoclaved aerated concrete building
Download
index.pdf
Date
2018-09-01
Author
Gökmen, Furkan
Binici, Barış
Canbay, Erdem
ERYURTLU, ZAFER
OZDEMIR, GULAY
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
146
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/48596
DOI
https://doi.org/10.1002/cepa.817
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
In situ seismic testing of a reinforced autoclaved aerated concrete building
Binici, Barış; Gökmen, Furkan; Canbay, Erdem; Eryurtlu, Zafer; Ozdemir, Gulay (2018-10-01)
Autoclaved aerated concrete (AAC) reinforced panels are used to construct easily erected, energy efficient, low-rise prefabricated buildings. This study aims to contribute to the understanding of the seismic response of reinforced-AAC-wall-panel buildings. For this purpose, a full-scale two-story building constructed on a building site by using reinforced AAC panels was tested under two-way cyclic displacement excursions up to near collapse. The test results showed that the test building had a lateral load ...
In Situ Lateral Load Testing of a Two-Story Solid Clay Brick Masonry Building
ALDEMİR, ALPER; Binici, Barış; Canbay, Erdem; Yakut, Ahmet (American Society of Civil Engineers (ASCE), 2018-10-01)
The seismic behavior of unreinforced masonry (URM) structures has usually been investigated by conducting laboratory tests. Such efforts, although useful in order to understand the response of single walls or subassemblages, cannot fully mimic the in situ seismic response of masonry buildings. In this study, in situ lateral load testing of a two-story full-scale URM building was conducted. First, forced vibration tests were performed to determine the vibration frequencies of the building. Afterwards, the bu...
In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste
Itty, PierreAdrien; Serdar, Marijana; Akgül, Çağla; Parkinson, Dula; MacDowell, Alastair A; Bjegovic, Dubravka; Monteiro, Paulo JM (Elsevier BV, 2014-06-01)
In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For fer...
In Situ Measurement of Heavy-ion-irradiation-induced Plastic Flow of Amorphous CuTiAg Micropillars
Özerinç, Sezer; King, William (2014-02-16)
In Situ Micro-Pillar Compression to Examine Radiation-Induced Hardening Mechanisms of FeCrAl Alloys
Cui, Yuchi; Aydoğan Güngör, Eda; Gigax, Jonathan G.; Wang, Yongqiang; Misra, Amit; Maloy, Stuart A.; Li, Nan (Elsevier BV, 2021-01-01)
© 2020The effects of 5 MeV Fe2+ ion irradiation at 300°C on the microstructure evolution and deformation behavior of a FeCrAl C26M alloy are presented. It has been found that dislocation loop density increases an order of magnitude from 1 dpa to 16 dpa irradiations, whereas, the dislocation loop size saturates with increasing damage. Micropillars, 600 nm in diameter and 1.3 µm in height, were fabricated and compressed inside grains with , and crystallographic orientations, respectively. {112} has been id...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Gökmen, B. Binici, E. Canbay, Z. ERYURTLU, and G. OZDEMIR, “In situ seismic testing of a reinforced autoclaved aerated concrete building,” 2018, vol. 2, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48596.