Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Finding nadir points in multi-objective integer programs
Date
2015-05-01
Author
Köksalan, Mustafa Murat
LOKMAN, BANU
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
127
views
0
downloads
Cite This
Let H be a subgroup of a finite group G, and suppose that H contains a Sylow p-subgroup P of G. Write N=NG(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = \mathbf{N}_{G}(H)$$\end{document}, and assume that the Sylow p-subgroups of H boolean AND Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \cap H<^>g$$\end{document} are cyclic for all elements g is an element of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \in G$$\end{document} not lying in N. We show that in this situation, N controls G-fusion in P.
Subject Keywords
Management Science and Operations Research
,
Control and Optimization
,
Applied Mathematics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/52112
Journal
JOURNAL OF GLOBAL OPTIMIZATION
DOI
https://doi.org/10.1007/s10898-014-0212-0
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
Cyclic intersections and control of fusion
Isaacs, I. M.; Kızmaz, Muhammet Yasir (Springer Science and Business Media LLC, 2019-12-01)
Let H be a subgroup of a finite group G, and suppose that H contains a Sylow p-subgroup P of G. Write N=NG(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N = \mathbf{N}_{G}(H)$$\end{document}, and assume that the Sylow p-subgroups of H boolean AND Hg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep...
Invariant subspaces for Banach space operators with an annular spectral set
Yavuz, Onur (2008-01-01)
Consider an annulus Omega = {z epsilon C : r(0) 0 such that parallel to p(T)parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} and parallel to p(r(0)T(-1))parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} for all polynomials p. Then there exists a nontrivial common invariant subspace for T* and T*(-1).
Subspace packings: constructions and bounds
Etzion, Tuvi; Kurz, Sascha; Otal, Kamil; Özbudak, Ferruh (Springer Science and Business Media LLC, 2020-09-01)
Grassmannian Gq (n, k) is the set of all k-dimensional subspaces of the vector space Fn q. Kotter and Kschischang showed that codes in Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian Gq (n, k) also form a family of q-analogs of block designs and they are called subspace designs. In this paper, we examine one of the last families of q-analog...
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
ON THE NUMERICAL EVALUATION OF AN OSCILLATING INFINITE SERIES-III
Tezer, Münevver (Informa UK Limited, 1990-01-01)
An oscillating infinite series involving product of Bessel function J o(x) and an oscillating infinite series involving trigonometric function sin(x) were evaluated and computed numerically in [1] and [2] respectively. In this paper, an oscillating infinite series involving product of exponential, Bessel and trigonometric functions is evaluated. The series is transformed first into the sum of two infinite integrals by using contour integration and then the infinite integral with oscillating integrand is tra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. M. Köksalan and B. LOKMAN, “Finding nadir points in multi-objective integer programs,”
JOURNAL OF GLOBAL OPTIMIZATION
, pp. 55–77, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52112.